Hallo Bertie,
\(60y^2 + 65x^2 - 128xy - 448x +448y + 768+{\color{red}60\cdot c}= 0 \qquad c > 0 \) hyperbola between lines
Here is the answer:
I.
\(\small{ \begin{array}{lrcll} \mathbf{\text{1. line}} & 13x-10y-48=0 \\ &y &=& m_1x+b_1\\ &y &=&\frac{13}{10}x -\frac{48}{10} \\ & m_1 &=& \frac{13}{10}\\ & b_1 &=& -\frac{48}{10}\\ \text{or } & m_1x+b_1-y &=& 0 \qquad (\frac{13}{10}x -\frac{48}{10}-y=0) \\ \\ \mathbf{\text{2. line}} & 5x-6y-16=0 \\ &y &=& m_2x+b_2\\ &y &=&\frac{5}{6}x -\frac{16}{6} \\ & m_2 &=& \frac{5}{6}\\ & b_2 &=& -\frac{16}{6}\\ \text{or } & m_2x+b_2-y &=& 0 \qquad (\frac{5}{6}x -\frac{16}{6} -y=0) \\\\ \mathbf{\text{Intersection 1. line}} \\ \mathbf{\text{and 2.line}}\\ & x_c &=& \frac{b_2-b_1}{m_1-m_2} = \frac{32}{7} \\ & y_c &=& \frac{m_1b_2-b_1m_2}{m_1-m_2} = \frac{8}{7} \\ \end{array} }\)
II. The Hyperbola is the product of the two lines + c : \(\boxed{~ (m_1x+b_1-y)(m_2x+b_2-y) + c = 0 ~}\) c > 0
\(\small{ \begin{array}{lrcll} \text{or } &\boxed{~ y^2+m_1m_2x^2+\left(m_1b_2+m_2b_1\right)x-\left(m_1+m_2\right)xy-\left(b_1+b_2\right)y+b_1b_2+c=0~} \\ \text{or } & y^2+ \frac{13}{12}x^2-\frac{112}{15}x-\frac{32}{15}xy+\frac{112}{15}y+\frac{64}{5}+c=0 \qquad \cdot 60\\ \text{or } &\boxed{~ 60y^2+ 65x^2-448x-128xy+448y+768+60\cdot c=0 ~} \end{array} }\)
III. The Hyperbola is: \(\small{ \begin{array}{rll} Y^2 + aX^2 + bXY + c &=& 0. \qquad | \quad X = x - x_c,~ Y = y - y_c & [see\ \#6]\\ \end{array} } \)
\(\small{ \begin{array}{lclcrl} a &=& m_1m_2 &=&\frac{13}{13} & [see\ \#11]\\ b &=& -(m_1+m_2) &=& -\frac{32}{15} & [see\ \#11]\\ x_c &=& \frac{b_2-b_1}{m_1-m_2} &=& \frac{32}{7} &\\ y_c &=& \frac{m_1b_2-b_1m_2}{m_1-m_2} &=& \frac{8}{7} & \\ \end{array} }\)
let us put all things together:
\(\small{ \begin{array}{rcll} (y - \frac{m_1b_2-b_1m_2}{m_1-m_2})^2 + m_1\cdot m_2\cdot (x - \frac{b_2-b_1}{m_1-m_2})^2 - (m_1+m_2)\cdot (x - \frac{b_2-b_1}{m_1-m_2})\cdot (y - \frac{m_1b_2-b_1m_2}{m_1-m_2}) + c &=& 0\\ \cdots \\ \end{array} }\\ \)
\(\small{ \begin{array}{lcll} &=& y^2\\ &+&m_1m_2x^2\\ &+&\left[ \underbrace{ \frac{(m_1+m_2)(m_1b_2-b_1m_2)-2m_1m_2(b_2-b_1)}{m_1-m_2}}_{1.} \right] x\\ &-&(m_1+m_2)xy\\ &+&\left[ \underbrace{ \frac{(m_1+m_2)(b_2-b_1)-2(m_1b_2-b_1m_2)}{m_1-m_2}}_{2.}\right] y\\ &+&\underbrace{ \frac{(m_1b_2-b_1m_2)^2+m_1m_2(b_2-b_1)^2-(m_1+m_2)(b_2-b_1)(m_1b_2-b_1m_2)}{(m_1-m_2)^2}}_{3.}\\ &+& c = 0 \end{array} }\)
calculate 1. :
\(\small{ \begin{array}{lcll} \frac{(m_1+m_2)(m_1b_2-b_1m_2)-2m_1m_2(b_2-b_1)}{m_1-m_2} \\ = \frac{(m_1+m_2)m_1b_2 -(m_1+m_2)b_1m_-2m_1m_2b_2+2m_1m_2b_1}{m_1-m_2} \\ \cdots \\ = \frac{-m_1m_2b_2+m_1m_2b_1+m_1^2b_2-m_2^2b_1}{m_1-m_2}\\ = \frac{b_1m_2(m_1-m_2)+b_2m_1(m_1-m_2)}{m_1-m_2}\\ \mathbf{= b_1m_2+b_2m_1}\\ \end{array} }\)
calculate 2. :
\(\small{ \begin{array}{lcll} \frac{(m_1+m_2)(b_2-b_1)-2(m_1b_2-b_1m_2)}{m_1-m_2}\\ = \frac{ m_1b_2-m_1b_1+m_2b_2-m_2b_1-2m_1b_2+2b_1m_2}{m_1-m_2}\\ = \frac{ -m_1b_2+b_1m_2-m_1b_1+m_2b_2}{m_1-m_2}\\ = \frac{-b_2(m_1-m_2)-b_1(m_1-m_2)}{m_1-m_2}\\ = -b_2-b_1\\ \mathbf{= -(b_1+b_2) }\\ \end{array} }\)
calculate 3. :
\(\small{ \begin{array}{lcll} \frac{(m_1b_2-b_1m_2)^2+m_1m_2(b_2-b_1)^2-(m_1+m_2)(b_2-b_1)(m_1b_2-b_1m_2)}{(m_1-m_2)^2} \\ \cdots \\ = \frac{-2m_1m_2b_1b_2+m_1^2b_1b_2+m_2^2b_1b_2}{(m_1-m_2)^2} \\ = \frac{b_1b_2(m_1^2-2m_1m_2+m_2^2)}{(m_1-m_2)^2} \\ = \frac{b_1b_2(m_1-m_2)^2)}{(m_1-m_2)^2} \\ \mathbf{= b_1b_2} \\ \end{array} }\)
So we have the same:
\(\small{ \begin{array}{lrcll} \boxed{~ y^2+m_1m_2x^2+\left(m_1b_2+m_2b_1\right)x-\left(m_1+m_2\right)xy-\left(b_1+b_2\right)y+b_1b_2+c=0~} \\ \end{array} }\)