Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #16
avatar+26396 
+25

Hallo Bertie,

60y2+65x2128xy448x+448y+768+60c=0c>0   hyperbola between lines

 

Here is the answer:

 

I.

1. line13x10y48=0y=m1x+b1y=1310x4810m1=1310b1=4810or m1x+b1y=0(1310x4810y=0)2. line5x6y16=0y=m2x+b2y=56x166m2=56b2=166or m2x+b2y=0(56x166y=0)Intersection 1. lineand 2.linexc=b2b1m1m2=327yc=m1b2b1m2m1m2=87

 

II. The Hyperbola is the product of the two lines + c :  (m1x+b1y)(m2x+b2y)+c=0    c > 0

 

or  y2+m1m2x2+(m1b2+m2b1)x(m1+m2)xy(b1+b2)y+b1b2+c=0 or y2+1312x211215x3215xy+11215y+645+c=060or  60y2+65x2448x128xy+448y+768+60c=0 

 

 

III. The Hyperbola is:  Y2+aX2+bXY+c=0.|X=xxc, Y=yyc[see #6]

a=m1m2=1313[see #11]b=(m1+m2)=3215[see #11]xc=b2b1m1m2=327yc=m1b2b1m2m1m2=87

 

let us put all things together:

(ym1b2b1m2m1m2)2+m1m2(xb2b1m1m2)2(m1+m2)(xb2b1m1m2)(ym1b2b1m2m1m2)+c=0

=y2+m1m2x2+[(m1+m2)(m1b2b1m2)2m1m2(b2b1)m1m21.]x(m1+m2)xy+[(m1+m2)(b2b1)2(m1b2b1m2)m1m22.]y+(m1b2b1m2)2+m1m2(b2b1)2(m1+m2)(b2b1)(m1b2b1m2)(m1m2)23.+c=0

 

calculate 1. :

(m1+m2)(m1b2b1m2)2m1m2(b2b1)m1m2=(m1+m2)m1b2(m1+m2)b1m2m1m2b2+2m1m2b1m1m2=m1m2b2+m1m2b1+m21b2m22b1m1m2=b1m2(m1m2)+b2m1(m1m2)m1m2=b1m2+b2m1

 

calculate 2. :

(m1+m2)(b2b1)2(m1b2b1m2)m1m2=m1b2m1b1+m2b2m2b12m1b2+2b1m2m1m2=m1b2+b1m2m1b1+m2b2m1m2=b2(m1m2)b1(m1m2)m1m2=b2b1=(b1+b2)

 

calculate 3. :

(m1b2b1m2)2+m1m2(b2b1)2(m1+m2)(b2b1)(m1b2b1m2)(m1m2)2=2m1m2b1b2+m21b1b2+m22b1b2(m1m2)2=b1b2(m212m1m2+m22)(m1m2)2=b1b2(m1m2)2)(m1m2)2=b1b2

 

So we have the same:

 y2+m1m2x2+(m1b2+m2b1)x(m1+m2)xy(b1+b2)y+b1b2+c=0 

 

laughlaughlaugh

22.01.2016
 #11
avatar+26396 
+15

Hallo Bertie,

i have finished your wonderful solution.

 

I set slope line 1:  m1=1310and slope line 2:  m2=56and your equation:  Y2+aX2+bXY+c=0.|X=x327, Y=y87and your equations of the two asymptotes:  (YX)2+bYX+a=0and with solution of a quadratic:  YX=12(b±b24a)we can find a and b: 

 

YX=12(b±b24a)2YX+b=±b24a|(square both sides)(2YX+b)2=b24a4(YX)2+4YXb+b2=b24a4(YX)2+4YXb=4a(YX)2+YXb=a|we set  YX=m1 and YX=m2m21+m1b=a=m22+m2bb(m1m2)=m22m21b(m1m2)=(m2m1)(m1+m2)b(m1m2)=(m1m2)(m1+m2)b=(m1+m2)=(1310+56)=3215m21+m1b=am22+m2b=ab=am21m1=am22m2m2(am21)=m1(am22)a(m1m2)=m1m2(m1m2)a=m1m2=131056=1312

 

your equation is now: Y2+m1m2X2(m1+m2)XY+c=0.|X=x327, Y=y87or: (y87)2+131056(x327)2(1310+56)(x327)(y87)+c=0

 

laugh

21.01.2016
 #2
avatar+26396 
+15

Wie sieht die 2. Ableitung zu folgender Funktion aus?

f(x)= ln(x+2)-ln(x+1)

 

 y=ln( f(x) )y=f(x)f(x) 

 

y=ln( x+2 )y=1(x+2)y=ln( x+1 )y=1(x+1)

 

y=ln( x+2 )ln( x+1 )y=1(x+2)1(x+1)=1x2+3x+2

 

 y=1f(x)=f(x)1(nach der Kettenregel abgeleitet)y=(1)f(x)11f(x)=f(x)2f(x)=f(x)f(x)2 

 

y=1x+2y=1(x+2)2y=1x+1y=1(x+1)2

y=1x+21x+1y=1(x+2)2(1(x+1)2)=1(x+2)2+1(x+1)2y=2x+3(x2+3x+2)2

 

laugh

20.01.2016