1, 6, 20, 51, 189, 517, 2197, 4823, 14496, what comes next?
d0=162051189⋯1. Difference d1=51431138328⋯2. Difference d2=9171071901352⋯3. Difference d3=84. Difference d4=825. Difference d5=−896. Difference d6=11757. Difference d7=−49088. Difference d8=19363
an=(n−10)⋅d0+(n−11)⋅d1+(n−12)⋅d2+(n−13)⋅d3+(n−14)⋅d4+(n−15)⋅d5+(n−16)⋅d6+(n−17)⋅d7+(n−18)⋅d8an=(n−10)⋅1+(n−11)⋅5+(n−12)⋅9+(n−13)⋅8+(n−14)⋅82+(n−15)⋅(−89)+(n−16)⋅1175+(n−17)⋅(−4908)+(n−18)⋅19363a10=(90)⋅1+(91)⋅5+(92)⋅9+(93)⋅8+(94)⋅82+(95)⋅(−89)+(96)⋅1175+(97)⋅(−4908)+(98)⋅19363a10=1⋅1+9⋅5+36⋅9+84⋅8+126⋅82+126⋅(−89)+84⋅1175+36⋅(−4908)+9⋅19363a10=1+45+324+672+10332−11214+98700−176688+174267a10=96439
Well it is not in the OEIS so I do not like your chances of getting an answer :)
You can fit an order 8 polynomial to these numbers. The coefficients look awful but the next term given by the polynomial is 96439.
1, 6, 20, 51, 189, 517, 2197, 4823, 14496, what comes next?
d0=162051189⋯1. Difference d1=51431138328⋯2. Difference d2=9171071901352⋯3. Difference d3=84. Difference d4=825. Difference d5=−896. Difference d6=11757. Difference d7=−49088. Difference d8=19363
an=(n−10)⋅d0+(n−11)⋅d1+(n−12)⋅d2+(n−13)⋅d3+(n−14)⋅d4+(n−15)⋅d5+(n−16)⋅d6+(n−17)⋅d7+(n−18)⋅d8an=(n−10)⋅1+(n−11)⋅5+(n−12)⋅9+(n−13)⋅8+(n−14)⋅82+(n−15)⋅(−89)+(n−16)⋅1175+(n−17)⋅(−4908)+(n−18)⋅19363a10=(90)⋅1+(91)⋅5+(92)⋅9+(93)⋅8+(94)⋅82+(95)⋅(−89)+(96)⋅1175+(97)⋅(−4908)+(98)⋅19363a10=1⋅1+9⋅5+36⋅9+84⋅8+126⋅82+126⋅(−89)+84⋅1175+36⋅(−4908)+9⋅19363a10=1+45+324+672+10332−11214+98700−176688+174267a10=96439
1, 6, 20, 51, 189, 517, 2197, 4823, 14496, what comes next?
a1=1a2=6a3=20a4=51a5=189a6=517a7=2197a8=4823a9=14496
120189219714496+6+51+517+4823+55555=771⏟a1706⏟a27020⏟a370051⏟a4
next comes 55555
wow thanks guys ;D heureka and guest for helping me understand
conclusion:
1, 6, 20, 51, 189, 517, 2197, 4823, 14496, 55555