Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+5

Find the square root of 60i-11 

 

z2=a+biz2=11+60ia=11b=60z=11+60ir=a2+b2r=(11)2+602r=61tan(φ)=batan(φ)=6011(II.)tan(φ)=5.45454545455φ=arctan(5.45454545455)+180φ=79.6111421845+180φ=100.388857815z=r[cos(φ2+k3602)+isin(φ2+k3602)]k=0,1z0=61[cos(100.3888578152+03602)+isin(100.3888578152+03602)]z0=7.81024967591[cos(50.1944289077)+isin(50.1944289077)]z0=7.81024967591cos(50.1944289077)+i7.81024967591sin(50.1944289077)z0=5+6iz1=61[cos(100.3888578152+13602)+isin(100.3888578152+13602)]z1=7.81024967591[cos(230.194428908)+isin(230.194428908)]z1=7.81024967591cos(230.194428908)+i7.81024967591sin(230.194428908)z1=56i

 

laugh

27.01.2016
 #5
avatar+26396 
+10

A sector of a circle is inside a rectangle. The rectangle has the side lengths 25cm and 15cm. This also means that the radius of the sector is 25cm. What would be the area in the rectangle that is outside the sector?

The answer is 185cm^2 but i dont no how to get it. Please help!

 

 Arectangle=2515 cm2=375 cm2Asector of a circle=π252φ360 cm2AArea in the rectangle and outside sector=ArectangleAsector of a circleAArea in the rectangle and outside sector=375 cm2π252φ360 cm2AArea in the rectangle and outside sector=375 cm2π625φ360 cm2sin(φ2)=15225sin(φ2)=7.525sin(φ2)=0.3φ2=arcsin(0.3)φ2=17.4576031237φ=217.4576031237φ=34.9152062474AArea in the rectangle and outside sector=375 cm2π62534.9152062474360 cm2AArea in the rectangle and outside sector=375 cm2190.432908760 cm2AArea in the rectangle and outside sector=184.567091240 cm2AArea in the rectangle and outside sector185 cm2

 

laugh

26.01.2016