heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

Find the square root of 60i-11 

 

\(\begin{array}{rcll} z^2 &=& a+b\cdot i\\ z^2 &=& -11+60i \qquad a = -11 \qquad b = 60\\ z&=&\sqrt{-11+60i}\\\\ r &=& \sqrt{a^2+b^2} \\ r &=& \sqrt{(-11)^2+60^2}\\ r &=& 61\\\\ \tan{(\varphi)} &=& \frac{b}{a} \\ \tan{(\varphi)} &=& \frac{60}{-11} \qquad (\mathbf{II.})\\ \tan{(\varphi)} &=& -5.45454545455 \\ \varphi &=& \arctan{(-5.45454545455)} +180^\circ\\ \varphi &=& -79.6111421845 +180^\circ\\ \varphi &=& 100.388857815^\circ \\\\ z &=& \sqrt{r}\cdot \left[ \cos{( \frac{\varphi}{2} + k\cdot \frac{360^\circ}{2} )} + i \cdot \sin{ (\frac{\varphi}{2} + k\cdot \frac{360^\circ}{2}) } \right] \qquad k=0,1\\\\ z_0 &=& \sqrt{61}\cdot \left[ \cos{( \frac{100.388857815^\circ }{2} + 0\cdot \frac{360^\circ}{2} )} + i \cdot \sin{ (\frac{100.388857815^\circ }{2} + 0\cdot \frac{360^\circ}{2}) } \right]\\ z_0 &=& 7.81024967591\cdot \left[ \cos{( 50.1944289077^\circ )} + i \cdot \sin{ (50.1944289077^\circ) } \right]\\ z_0 &=& 7.81024967591\cdot \cos{( 50.1944289077^\circ )} + i \cdot 7.81024967591 \cdot \sin{ (50.1944289077^\circ) } \\ \mathbf{z_0} &\mathbf{=}& \mathbf{5 + 6\cdot i} \\\\ z_1 &=& \sqrt{61}\cdot \left[ \cos{( \frac{100.388857815^\circ }{2} + 1\cdot \frac{360^\circ}{2} )} + i \cdot \sin{ (\frac{100.388857815^\circ }{2} + 1\cdot \frac{360^\circ}{2}) } \right]\\ z_1 &=& 7.81024967591\cdot \left[ \cos{( 230.194428908^\circ )} + i \cdot \sin{ (230.194428908^\circ) } \right]\\ z_1 &=& 7.81024967591\cdot \cos{( 230.194428908^\circ )} + i \cdot 7.81024967591\cdot \sin{ (230.194428908^\circ) } \\ \mathbf{z_1 }&\mathbf{=}&\mathbf{ -5 -6\cdot i }\\ \end{array}\)

 

laugh

27.01.2016
 #5
avatar+26387 
+10

A sector of a circle is inside a rectangle. The rectangle has the side lengths 25cm and 15cm. This also means that the radius of the sector is 25cm. What would be the area in the rectangle that is outside the sector?

The answer is 185cm^2 but i dont no how to get it. Please help!

 

 \(\begin{array}{rcll} A_{\text{rectangle}} &=& 25\cdot 15 \ cm^2 \\ &=& 375 \ cm^2 \\\\ A_{\text{sector of a circle}} &=& \pi \cdot 25^2 \cdot \frac{\varphi}{360^\circ} \ cm^2 \\ A_{\text{Area in the rectangle and outside sector}} &=& A_{\text{rectangle}} - A_{\text{sector of a circle}}\\ A_{\text{Area in the rectangle and outside sector}} &=& 375 \ cm^2 - \pi \cdot 25^2 \cdot \frac{\varphi}{360^\circ} \ cm^2\\ A_{\text{Area in the rectangle and outside sector}} &=& 375 \ cm^2 - \pi \cdot 625 \cdot \frac{\varphi}{360^\circ} \ cm^2\\\\ \sin{(\frac{\varphi}{2})} &=& \frac{\frac{15}{2}}{25} \\ \sin{(\frac{\varphi}{2})} &=& \frac{7.5}{25} \\ \sin{(\frac{\varphi}{2})} &=& 0.3 \\ \frac{\varphi}{2} &=& \arcsin{(0.3)} \\ \frac{\varphi}{2} &=& 17.4576031237^\circ \\ \varphi &=& 2\cdot 17.4576031237^\circ \\ \varphi &=& 34.9152062474^\circ \\\\ A_{\text{Area in the rectangle and outside sector}} &=& 375 \ cm^2 - \pi \cdot 625 \cdot \frac{34.9152062474^\circ}{360^\circ} \ cm^2\\\\ A_{\text{Area in the rectangle and outside sector}} &=& 375 \ cm^2 - 190.432908760 \ cm^2\\\\ A_{\text{Area in the rectangle and outside sector}} &=& 184.567091240 \ cm^2\\\\ A_{\text{Area in the rectangle and outside sector}} &\approx& 185 \ cm^2\\\\ \end{array}\)

 

laugh

26.01.2016