heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #6
avatar+26388 
+15

Ich glaube aber dass Sie mich falsch verstanden haben oder ich es falsch formuliert habe :( {nl} Könnten Sie mir bitter erneut helfen .. Ich sende Ihnen ein Bild von der Aufgabe, vielleicht schafft das etwas mehr Ordnung

 

 

\(\begin{array}{lrcl} \mathbf{(b)} & z = \frac{ (1+i)(2-i) } { 1-i } &=& \left( \frac{ 1+i } { 1-i } \right) \cdot (2-i) \\\\ & && \left( \frac{ 1+i } { 1-i } \right) = \left( \frac{ 1+i } { 1-i } \right) \cdot \left( \frac{ 1+i } { 1+i } \right)\\ & &&= \frac{ (1+i)^2 } { (1-i)(1+i) } \\ & &&= \frac{ (1+i)^2 } { 1-i^2 } \\ & &&= \frac{ 1+2i+i^2 } { 1-i^2 } \qquad | \qquad i^2 = -1 \\ & &&= \frac{ 1+2i-1 } { (1+1) } \\ & &&= \frac{ 2i } { 2 } \\ & &&= i \\ & && \left( \frac{ 1+i } { 1-i } \right) = i\\\\ & \frac{ (1+i)(2-i) } { 1-i } &=& \left( \frac{ 1+i } { 1-i } \right) \cdot (2-i) \\ & \frac{ (1+i)(2-i) } { 1-i } &=& i \cdot (2-i) \\ & &=& 2i - i^2 \\ & &=& 2i +1 \\ & \mathbf{ z = \frac{ (1+i)(2-i) } { 1-i } } &=& \mathbf{ 1 + 2i }\\\\\\ & \mathbf{ z } &=& \mathbf{ 1 + 2i }\\ & \mathbf{ z^* } &=& \mathbf{ 1 {\color{red}-} 2i } \end{array}\)

 

\(\boxed{~ \text{Für }~ z=a+b\,\mathrm{i} ~ \text{ in algebraischer Form ist } \\ \qquad r = |z| = \sqrt{a^2 + b^2}=\sqrt{z \cdot z^*}. ~}\)

 

\(\begin{array}{rcl} z=1+2i \quad a = 1 \quad b = 2\\ r &=& |z| = \sqrt{a^2 + b^2} \\ r &=& \sqrt{1^2 + 2^2} \\ \mathbf{r} &\mathbf{=}& \mathbf{\sqrt{5}} \\\\ r &=& \sqrt{z \cdot z^*} \\ r &=& \sqrt{(1+2i) \cdot (1-2i) } \\ r &=& \sqrt{ 1^2 - (2i)^2 } \\ r &=& \sqrt{ 1^2 - 4i^2 } \qquad | \qquad i^2 = -1 \\ r &=& \sqrt{ 1 - 4(-1) } \\ r &=& \sqrt{ 1 + 4 } \\ \mathbf{r} &\mathbf{=}& \mathbf{\sqrt{5}} \end{array}\)

 

laugh

02.12.2015
 #2
avatar+26388 
+40

Pi/4=8arctan(1/10) - arctan(a/b). Find "a" and "b", so that the equality is true. Thank you very much for any help.

 

\(\begin{array}{rcl} 8\cdot \arctan{ ( \frac{1}{10} ) } - \arctan{ ( \frac{a}{b} ) } &=& \frac{\pi}{4}\\ \end{array}\)

 

\( \text{Formula: } \quad \boxed{~ \tan{(2x)} = \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } ~}\)

 

I.  We set:    \(x = \arctan{ ( \frac{1}{10} ) } \quad \text{ and } \quad \tan{(x)} = \frac{1}{10}\)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 2 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} }= \dfrac{2\cdot \frac{1}{10} } { 1- \frac{1}{10}\cdot \frac{1}{10} } = \frac{20}{99}\\ \qquad 2 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{20}{99} ) } \end{array} }\)

 

 

II. We set:   \(x = 2\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{20}{99} ) }\quad \text{ and } \quad \tan{(x)} = \frac{20}{99} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 4 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{20}{99} } { 1- \frac{20}{99}\cdot \frac{20}{99} } = \frac{3960}{9401}\\ \qquad 4 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{3960}{9401} ) } \end{array} }\)

 

 

III. We set:   \(x = 4\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{3960}{9401} ) }\quad \text{ and } \quad \tan{(x)} = \frac{3960}{9401} \)

\(\small{ \begin{array}{rcl} \tan{(2x)} = \tan{( 8 \arctan{ ( \frac{1}{10} ) } )} &=& \frac{ 2\tan{(x)} }{ 1- \tan{(x)}\cdot \tan{(x)} } =\dfrac{2\cdot \frac{3960}{9401} } { 1- \frac{3960}{9401}\cdot \frac{3960}{9401} } = \frac{74455920}{72697201}\\ \qquad 8 \arctan{ ( \frac{1}{10} ) } &=& \arctan{ ( \frac{74455920}{72697201} ) } \end{array} }\)

 

 

IV.

\(\text{Formula: } \quad \boxed{~ \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } ~}\)

 

We set:   \(x = 8\arctan{ ( \frac{1}{10} ) } = \arctan{ ( \frac{74455920}{72697201} ) } \quad \text{ and } \quad \tan{(x)} = \frac{74455920}{72697201}\\ y = \arctan{ ( \frac{a}{b} ) } \quad \text{ and } \quad \tan{(y)} = \frac{a}{b}\\ \tan{(x+y)} = 1\)

 

\(\small{ \begin{array}{rcl} \tan{(x+y)} = \frac{ \tan{(x)}+\tan{(y)} }{ 1- \tan{(x)}\cdot \tan{(y)} } &=& \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } = 1\\\\ \qquad \dfrac{ \frac{74455920}{72697201}+\frac{a}{b} }{ 1- \frac{74455920}{72697201}\cdot \frac{a}{b} } &=& 1\\\\ \qquad \frac{74455920}{72697201}+\frac{a}{b} &=& 1- \frac{74455920}{72697201}\cdot \frac{a}{b}\\\\ \qquad \frac{a}{b}+ \frac{74455920}{72697201}\cdot \frac{a}{b} &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( 1 + \frac{74455920}{72697201} \right) &=& 1-\frac{74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot \left( \frac{72697201+74455920}{72697201} \right) &=& \frac{72697201-74455920}{72697201}\\\\ \qquad \frac{a}{b}\cdot ( 72697201+74455920 ) &=& 72697201-74455920\\\\ \qquad \frac{a}{b} &=& \dfrac{ 72697201-74455920 } { 72697201+74455920 }\\\\ \qquad \frac{a}{b} &=& \dfrac{ -1758719 } { 147153121 }\\\\ \hline \\ \tan{(x+y)} = 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }+\arctan{ ( \frac{a}{b} ) })} &=& 1 \\ \tan{(8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) })} &=& 1 \\ 8\arctan{ ( \frac{1}{10} ) }-\arctan{ ( \frac{ 1758719 } { 147153121 } ) } &=& \arctan{(1)} \\\\ \mathbf{ 8\arctan{ ( \dfrac{1}{10} ) }-\arctan{ ( \dfrac{ 1758719 } { 147153121 } ) } } & \mathbf{=} & \mathbf{\dfrac{\pi} {4}} \end{array} }\)

 

laugh

02.12.2015
 #1
avatar+26388 
+30

 Hi weiß jemand was die letzte Ziffer von der Zahl 4 (hoch) 1024 ist?

 

\(\begin{array}{rclcrr} && & & \text{letzte Ziffer} & \text{Exponent von } 4 \\ \hline 4^{1} \pmod {10} &=& 4 \pmod {10} &=& 4 & \text{ungerade}\\ 4^{{\color{red}{2}}} \pmod {10} &=& 1{\color{red}{6}} \pmod {10} &=& {\color{red}{6}} & { \color{red}\text{gerade} }\\ 4^{3} \pmod {10} &=& 64 \pmod {10} &=& 4 & \text{ungerade}\\ 4^{{\color{red}{4}}} \pmod {10} &=& 25{\color{red}{6}} \pmod {10} &=& {\color{red}{6}} & { \color{red}\text{gerade} }\\ 4^{5} \pmod {10} &=& 1024 \pmod {10} &=& 4 & \text{ungerade}\\ 4^{{\color{red}{6}}} \pmod {10} &=& 409{\color{red}{6}} \pmod {10} &=& {\color{red}{6}} & { \color{red}\text{gerade} }\\ 4^{7} \pmod {10} &=& 16384 \pmod {10} &=& 4 & \text{ungerade}\\ 4^{{\color{red}{8}}} \pmod {10} &=& 6553{\color{red}{6}} \pmod {10} &=& {\color{red}{6}} & { \color{red}\text{gerade} }\\ 4^{9} \pmod {10} &=& 262144 \pmod {10} &=& 4 & \text{ungerade}\\ 4^{{\color{red}{10}}} \pmod {10} &=& 104857{\color{red}{6}} \pmod {10} &=& {\color{red}{6}} & { \color{red}\text{gerade} }\\ \cdots \end{array} \\ \begin{array}{l} \text{Die letze Ziffer von } 4^n \text{ ist } 4 \text{, wenn der Exponent von 4 ungerade ist.}\\ \text{Die letze Ziffer von } 4^n \text{ ist } 6 \text{, wenn der Exponent von 4 gerade ist.}\\ \text{Unser Exponent ist } 1024 \text{ und das ist ein gerader Exponent, also ist letzte Ziffer von } 4^{1024} = 6\\ 4^{{\color{red}{1024}}} \pmod {10} ={\color{red}{6}}\quad \text{(Der Exponent ist gerade)}\\ \end{array}\)

 

Die letze Ziffer ist 6

 

 

laugh

02.12.2015
 #4
avatar+26388 
+30

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel. {nl} Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.

 

In General: cut two lines.

 

Line 1 with two Points: \(\dbinom{x_1}{y_1}\) and  \(\dbinom{x_2}{y_2}\)

 

Line 2 with two Points: \(\dbinom{x_3}{y_3}\) and  \( \dbinom{x_4}{y_4}\)

 

The coordinates for the cut eachother is \(\dbinom{x_c}{y_c}\)

\(\boxed{~ \begin{array}{lcl} x_c &=& x_3 + k\cdot (x_4-x_3)\\ y_c &=& y_3 + k\cdot (y_4-y_3)\\ k &=& \dfrac{ (x_3-x_1)(y_2-y_1)-(y_3-y_1)(x_2-x_1) }{(x_2-x_1)(y_4-y_3)-(x_4-x_3)(y_2-y_1)} \end{array} ~}\)

 

 

 

Calculation:

\(\begin{array}{lcl} \text{Line 1 with two Points:} \dbinom{x_1=-6}{y_1=-4} \text{ and } \dbinom{x_2=5}{y_2=7}\\\\ \text{Line 2 with two Points:} \dbinom{x_3=6}{y_3=-2} \text{ and } \dbinom{x_4=-4}{y_4=6}\\\\ \end{array}\\ \begin{array}{lcl} k &=& \dfrac{ [6-(-6)][7-(-4)]-[-2-(-4)][5-(-6)] } { [5-(-6)][6-(-2)]-[-4-(-6)][7-(-4)] }\\\\ k &=& \dfrac{ 12\cdot 11 - 2\cdot 11 } { 11\cdot 8 + 10\cdot 11 }\\\\ k &=& \dfrac{ 12 - 2 } { 8 + 10 }\\\\ k &=& \dfrac{ 10 } { 18 }\\\\ k &=& \dfrac{ 5 } { 9 }\\\\ x_c &=& 6 + \dfrac{ 5 } { 9 }\cdot (-4-6)\\ x_c &=& 6 - \dfrac{ 5\cdot 10 } { 9 }\\ x_c &=& \dfrac{ 54-50 } { 9 }\\ \mathbf{ x_c }& \mathbf{=} & \mathbf{ \dfrac{ 4 } { 9 } }\\\\ y_c &=& -2 + \dfrac{ 5 } { 9 }\cdot [6-(-2)]\\ y_c &=& -2 + \dfrac{ 5\cdot 8 } { 9 }\\ y_c &=& \dfrac{ -18+40 } { 9 }\\ \mathbf{ y_c } & \mathbf{=} & \mathbf{ \dfrac{ 22 } { 9 } } \end{array}\)

 

laugh

01.12.2015