Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
631
4
avatar

Alright so I just started with math and I am stuck on this question:

 

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel.
Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.


I've translated from Swedish so I hope you guys can understand it!


This is what I've done so far.


I started by drawing out line A (-4, 6) and (6, -2)

The k in line A is:  k=ΔY/ΔXΔYis8ΔXis10

Meaning that k = 8/10 = 0.8

 

The "m" in line a is: y = 0.8 * x + m

I'll input the first coordinates: 6 = 0.8 * -4 = m
6 = -3.2 + m
6 = -3.2 + 9.2

 

Now I've calculated that K is 0.8 and m is 9.2

 

 

Where do i go from here?

 Nov 30, 2015

Best Answer 

 #4
avatar+26396 
+30

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel. {nl} Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.

 

In General: cut two lines.

 

Line 1 with two Points: (x1y1) and  (x2y2)

 

Line 2 with two Points: (x3y3) and  (x4y4)

 

The coordinates for the cut eachother is (xcyc)

 xc=x3+k(x4x3)yc=y3+k(y4y3)k=(x3x1)(y2y1)(y3y1)(x2x1)(x2x1)(y4y3)(x4x3)(y2y1) 

 

 

 

Calculation:

Line 1 with two Points:(x1=6y1=4) and (x2=5y2=7)Line 2 with two Points:(x3=6y3=2) and (x4=4y4=6)k=[6(6)][7(4)][2(4)][5(6)][5(6)][6(2)][4(6)][7(4)]k=1211211118+1011k=1228+10k=1018k=59xc=6+59(46)xc=65109xc=54509xc=49yc=2+59[6(2)]yc=2+589yc=18+409yc=229

 

laugh

 Dec 1, 2015
edited by heureka  Dec 1, 2015
edited by heureka  Dec 1, 2015
 #1
avatar+118703 
0

I have put our question in the eye of the other answerers.  

I hoipe that you get your answer :)

http://web2.0calc.com/questions/unanswered-questions_26956

 Dec 1, 2015
 #2
avatar+33654 
+5

I get the following:

diagonals

 Dec 1, 2015
 #3
avatar+118703 
0

 

Thank you Alan.

 

You are a treasure   laugh

 Dec 1, 2015
 #4
avatar+26396 
+30
Best Answer

The points (-4, 6), (5,7), (6, -2) and (-6, -4) makes a quadrangel. {nl} Determine the coordinates for the exact point where the diagonals of the quadrangel cut eachother.

 

In General: cut two lines.

 

Line 1 with two Points: (x1y1) and  (x2y2)

 

Line 2 with two Points: (x3y3) and  (x4y4)

 

The coordinates for the cut eachother is (xcyc)

 xc=x3+k(x4x3)yc=y3+k(y4y3)k=(x3x1)(y2y1)(y3y1)(x2x1)(x2x1)(y4y3)(x4x3)(y2y1) 

 

 

 

Calculation:

Line 1 with two Points:(x1=6y1=4) and (x2=5y2=7)Line 2 with two Points:(x3=6y3=2) and (x4=4y4=6)k=[6(6)][7(4)][2(4)][5(6)][5(6)][6(2)][4(6)][7(4)]k=1211211118+1011k=1228+10k=1018k=59xc=6+59(46)xc=65109xc=54509xc=49yc=2+59[6(2)]yc=2+589yc=18+409yc=229

 

laugh

heureka Dec 1, 2015
edited by heureka  Dec 1, 2015
edited by heureka  Dec 1, 2015

0 Online Users