Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+5

Summe einer Geometrische Reihe

 

s=1+a+a2+a3+a4+a5+  an2+an1as=a+a2+a3+a4+a5+  an2+an1+ansas=1an(1a)s=1ans=1an1as=an1a1

 

2^0 =1 =1

2^0+2^1 =1 + 2 =3

2^0+2^1+2^2 =1 + 2 + 4 =7

2^0+2^1+2^2+2^3 =1 + 2 + 4 + 8 =15

2^0+2^1+2^2+2^3+2^4 =1 + 2 + 4 + 8 + 16 =31

2^0+2^1+2^2+2^3+2^4+2^5 =1 + 2 + 4 + 8 + 16 + 32 =63

 

Geometrische Reihe a = 2, Bildungsgesetz:

 

 s=2n121s=2n11s=2n1n=1:s=211=1n=2:s=221=3n=3:s=231=7n=6:s=261=63

 

 

3^0 =1 =1

3^0+3^1 =1 + 3 =4

3^0+3^1+3^2 =1 + 3 + 9 =13

3^0+3^1+3^2+3^3 =1 + 3 + 9 + 27 =40

3^0+3^1+3^2+3^3+3^4 =1 + 3 + 9 + 27 + 81 =121

3^0+3^1+3^2+3^3+3^4+3^5 =1 + 3 + 9 + 27 + 81 + 243 =364

 

Geometrische Reihe a = 3, Bildungsgesetz:

 

s=3n131s=3n12n=1:s=3112=1n=2:s=3212=4n=3:s=3312=13n=6:s=3612=364

 

laugh

08.12.2015
 #1
avatar+26396 
+5

Skydivers use an instrument called an altimeter to determine their height above Earths surface. An altimeter measures atmospheric pressure and converts it to altitude based on the relationship between pressure and altitude. One model for atmospheric pressure P (in kilo pascals, kPa) as a function of altitude a (in kilometers) is P=100e^(-a/8).  

 

A. Since an altimeter measures pressure directly, pressure is the independent variable for an altimeter.   Rewrite the model P=100e^(-a/8) so that it gives altitude as a function of pressure. 

 

P=100ea8|:100P100=ea8|lnln(P100)=ln(ea8)ln(P100)=a8|(1)ln(P100)=a8a8=ln(P100)a8=0ln(P100)|ln(1)=0a8=ln(1)ln(P100)a8=ln(1P100)a8=ln(100P)|8a=8ln(100P)

 

B. To check the function in part a, use the fact that atmospheric pressure at Earths surface is about 100kPa. 

 

a=8ln(100P)P=100 kPaa=8ln(100100)a=8ln(1)|ln(1)=0a=80a=0 km

 

C. Suppose a skydiver deploys the parachute when the altimeter measures 87kPa. Use the function in part a to determine the skydivers altitude. Give your answer in both kilometers and feet (1 kilometer=3281 feet).

 

a=8ln(100P)P=87 kPaa=8ln(10087)a=8ln(1.14942528736)a=80.13926206733a=1.11409653867 kma=1.11409653867 km3281 ft1 kma=3655.35074337 feet

 

laugh

08.12.2015
 #2
avatar+26396 
+10

Lass f eine Polynom Funktion mit Echtkoeffizienten sein. Wenn -7, 9, -8 +7i und 2-2i die Nullstellen von f sind, was ist der kleinst moeglichste Grad in der Standart Form?

 

Sind z1,  ,zn die Lösungen der Gleichung zn+an1zn1+  +a1z+a0=0 mit an1,  , a0C,so gilt: (zz1)(zz2)(zz3)  (zzn)=zn+an1zn1+  +a1z+a0Ist z=a+b·i eine Lösung einer Polynomgleichung anzn+an1zn1+  +a0=0 mit reellenKoeffizienten, so ist auch die konjugiert komplexe Zahl z=ab·i eine Lösung der Gleichung. f(x)=(x+7)(x9)[x(8+7i)][x(87i)][x(22i)][x(2+2i)]=x6+10 x530 x41194 x32039 x2+18604 x56952=0

 

Der kleinst mögliche Grad in der Standard Form ist 6.

 

Siehe auch 7.5.2 (Gleichungen höheren Grads, Fundamentalsatz der Algebra) in: 

http://arthur.hpt.at/php/online_links/links/LP_21640.pdf

 

laugh

07.12.2015
 #1
avatar+26396 
0
07.12.2015