Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+20

ABC is a triangle. D, E and F are the respective middles of segments [AB], [AC] and [BC].

A line d passing through A intersects with (DE) in G, a line d' passing through C intersects with (EF) in H.

Under what condition are lines (AG) and (CH) parallel?

You can get to an hypothesis, then prove it, using the Cartesian coordinate system of origin E. Good luck!

Nota Bene: The problem was originally in French, I had to translate it by myself. I apologize if the translation is wrong or if there are mistakes in notations or something. If you cannot do the exercise because of this, say it in the comments, I'll do my best to fix it. Thanks.

 

I. Ths sides of the triangle ABC are: a = (BC), b = (AC) , c = (AB)

 

II.  (DE) (BC) and (EF) (AB).

Proof:

The angles of the triangle are: A = BAC,  B = CBA, C = ACB

1. Cos-Rule:

Let x = (DE) then: (1):x2=(b2)2+(c2)22b2c2cos(A)|44x2=b2+c22bccos(A)(2):a2=b2+c22bccos(A)compare:4x2=a2we find:x=a2or(DE)=(BC)2

 

2. Sin-Rule:

Let ϵ = angle ADE then: (1):sin(ϵ)b2=sin(A)a2sin(ϵ)b=sin(A)a(2):sin(B)b=sin(A)acompare:sin(ϵ)=sin(B)we find:ϵ=B

 

so we have (DE) (BC)

permute and we have: (EF)=(AB)2=(c)2and angle CFE=Bso we have also (FE)(AB)

 

III.

a=BCc=BAGE=GE=λaHE=HE=μcAE=AE=a2c2CE=CE=c2a2d=GEAEd=HECEd=λaa2+c2d=μcc2+a2If|d×d|=0 then dd|d×d|=0|(λaa2+c2)×(μcc2+a2)|=0λμ|a×c|λ2|a×c|+λ2|a×a|area=0μ2|a×c|+14|a×c|14|a×a|area=0+μ2|c×c|area=014|c×c|area=0+14|c×a|=0λμ|a×c|λ2|a×c|μ2|a×c|+14|a×c|+14|c×a|=0λμ|a×c|λ2|a×c|μ2|a×c|+14|a×c|14|a×c|=0λμ|a×c|λ2|a×c|μ2|a×c|=0|a×c|0(λμλ2μ2)=0=0λμλ2μ2=0

 

 λμλ2μ2=02λμ=λμ2λ1=λμμ=λ2λ1or 2μ1=μλλ=μ2μ1or (2λ1)(2μ1)=1 

 

IV. Solution

a=BCc=BAGE=GE=λaHE=HE=μc GE=GE=λaHE=HE=λ2λ1cGE=GE=λ(BC)HE=HE=λ2λ1(BA)dd or (GA)(HC) 

 

laugh

23.11.2015
 #1
avatar+26396 
+4

nullstelle von 4x3-8x2-11x-3

 

Alle Teiler von -3 können eine Nullstelle sein.

Als Teiler kommen somit in Frage (±1, ±3 )

Wir testen:

1 ?4(1)38(1)211(1)3=4x=1 ist keine Nullstelle1 ?4(1)38(1)211(1)3=18x=1 ist keine Nullstelle3 ?4(3)38(3)211(3)3=150x=3 ist keine Nullstelle3 ?4(3)38(3)211(3)3=0x=3 ist eine Nullstelle

 

1. Lösung x = 3

(x3)(?)=0(x3)(ax2+bx+c)=0ax3+bx2+xc3ax23bx3c=0ax3+x2(b3a)+x(c3b)3c=0Koeffizientenvergleich4x38x211x3=0a=4b3a=8b=3a8b=348b=128b=4c3b=11c=3b11c=3411c=1211c=1Kontrolle:3c=3c=1  okay(x3)(4x2+4x+1=0)=04x2+4x+1=0ax2+bx+c=0x=b±b24ac2ax2,3=4±4244124x2,3=4±16168x2,3=4±08x2=48x2=12

 

2. Lösung x2=12

 

laugh

20.11.2015
 #1
avatar+26396 
+35
20.11.2015