heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26388 
+15

kann mir jemand bitte erklären wie man dieses Integral löst?

\( \int \limits_{-3}^{2} { \frac{7x}{1+x^2}\ dx}\)

 

\(\small{ \begin{array}{lrcll} & \int \limits_{-3}^{2} { \dfrac{7x}{1+x^2}\ dx} &=& 7 \int \limits_{-3}^{2} { \dfrac{x}{1+x^2}\ dx} \\ \hline \text{Substitution 1: } & x &=& \sinh{(z)} \\ & \ dx &=& \cosh{(z)} \ dz\\ \cosh^2{(z)}- \sinh^2{(z)} = 1 \\ \cosh^2{(z)} = 1 + \sinh^2{(z)} \\ & 1+x^2 &=& 1 + \sinh^2{(z)} =\cosh^2{(z)} \\ \hline & 7 \int \limits_{-3}^{2} { \dfrac{x}{1+x^2}\ dx} &=& 7 \int \limits_{-3}^{2} { \dfrac{\sinh{(z)}}{\cosh^2{(z)}} \cdot \cosh{(z)} \ dz}\\ & &=& 7 \int \limits_{-3}^{2} { \dfrac{\sinh{(z)}}{\cosh{(z)}} \ dz}\\ \sinh{(z)} = \frac{ e^z-e^{-z} }{2} \\ \cosh{(z)} = \frac{ e^z+e^{-z} }{2} \\ & &=& 7 \int \limits_{-3}^{2} { \dfrac{e^z-e^{-z}}{e^z+e^{-z}} \ dz}\\ \hline \text{Substitution 2: } & u &=& e^z+e^{-z} \\ & \ du &=& e^z\ dz+(-1)e^{-z} \ dz\\ & \ du &=& (e^z-e^{-z}) \ dz\\ \hline = 7 \int \limits_{-3}^{2} { \dfrac{\ du}{u}}\\ = 7 [\ln{(u)}]_{-3}^{2} & | \quad u = e^z+e^{-z}\\ = 7 [\ln{(e^z+e^{-z})}]_{-3}^{2} & | \quad e^z+e^{-z} = 2\cosh{(z)}\\ = 7 [\ln{(~2\cosh{(z)}~)}]_{-3}^{2} & | \quad \cosh^2{(z)} = 1 + \sinh^2{(z)} \\ = 7 [\ln{(~2 \sqrt{1 + \sinh^2{(z)}} ~)}]_{-3}^{2} & | \quad \sinh{(z)} = x \\ = 7 [\ln{(~2 \sqrt{1 + x^2} ~)}]_{-3}^{2} \\ & &=& 7 [\ln{(~2 \sqrt{1 + x^2} ~)}]_{-3}^{2} \\ & &=& 7 [\ln{(~2 (1 + x^2)^{\frac12} ~)}]_{-3}^{2} \\ & &=& 7 [\ln{2}+\ln{(~2 (1 + x^2)^{\frac12} ~)}]_{-3}^{2} \\ & &=& 7 [\underbrace{\ln{2}}_{\ln{2}-\ln{2}\ \text{kürzt sich raus}}+\ln{(~(1 + x^2)^{\frac12} ~)}]_{-3}^{2} \\ & &=& 7 [\ln{(~ (1 + x^2)^{\frac12} ~)}]_{-3}^{2} \\ & &=& 7 [\frac12 \ln{(~ 1 + x^2 ~)}]_{-3}^{2} \\ & &=& \frac72 [ \ln{(~ 1 + x^2 ~)}]_{-3}^{2} \\ & \mathbf{ \int \limits_{-3}^{2} { \dfrac{7x}{1+x^2}\ dx} }& \mathbf{=}& \mathbf{ \frac72 [ \ln{(~ 1 + x^2 ~)}]_{-3}^{2} } \\ \hline & \int \limits_{-3}^{2} { \dfrac{7x}{1+x^2}\ dx} &=& \frac72 [ \ln{(~ 1 + x^2 ~)}]_{-3}^{2} \\ & &=& \frac72 [ \ln{(~ 1 + (2)^2 ~)} - \ln{(~ 1 + (-3)^2 ~)} ] \\ & &=& \frac72 [ \ln{(~ 1 + 4 ~)} - \ln{(~ 1 + 9 ~)} ] \\ & &=& \frac72 [ \ln{(~ 5 ~)} - \ln{(~ 10 ~)} ] \\ & &=& \frac72 \ln{( \frac{5}{10} )} \\ & &=& \frac72 \ln{( \frac12 )} \\ & &=& \frac72 [ \ln{( 1 )} - \ln{( 2 )} ] \qquad \ln{( 1 )} = 0\\ & &=& \frac72 [ 0 - \ln{( 2 )} ] \\ & &=& \frac72 [ -\ln{( 2 )} ] \\ & &=& -\frac72 \ln{( 2 )} \\ & \mathbf{ \int \limits_{-3}^{2} { \dfrac{7x}{1+x^2}\ dx} }&\mathbf{=}& \mathbf{ -2.4260151320 } \\ \end{array} }\)

 

laugh

20.11.2015
 #2
avatar+26388 
+15

Two guy wires are attached to the top of a telecommunications tower and anchored to the ground on opposite sides of the tower, as shown. The length of the guy wire is 20 m more than the height of the tower. The horizontal distance from the base of the tower to where the guy wire is anchored to the ground is one-half the height of the tower. How tall is the tower, to the nearest tenth of a metre?

 

\(\small{ \begin{array}{rcll} \mathbf{ \text{Pythagoras:} }\\ \left( \dfrac{h}{2} \right)^2 + h^2 &=& (h+20)^2 \\ \dfrac{h^2}{4} + h^2 &=& h^2+40h+400 \\ \dfrac{h^2}{4} &=& 40h+400 \\ \dfrac{h^2}{4} -40h-400&=& 0 \qquad & | \qquad \cdot 4 \\ h^2 -160h-1600&=& 0 \\ \hline \boxed{~ \begin{array}{rcll} ax^2+bx +c &=& 0\\ x &=& {-b \pm \sqrt{b^2-4ac} \over 2a} \end{array} ~} \\ \hline x &=& {-b \pm \sqrt{b^2-4ac} \over 2a} \qquad a = 1 \quad b = -160 \quad c = -1600 \\ h_{1,2} &=& {160 \pm \sqrt{160^2-4\cdot(-1600)} \over 2} \\ h_{1,2} &=& {160 \pm \sqrt{160^2+40 \cdot 160 } \over 2} \\ h_{1,2} &=& {160 \pm \sqrt{160\cdot (160+40) } \over 2} \\ h_{1,2} &=& {160 \pm \sqrt{160\cdot 200 } \over 2} \\ h_{1,2} &=& {160 \pm \sqrt{1600\cdot 20 } \over 2} \\ h_{1,2} &=& {160 \pm 40 \sqrt{20 } \over 2} \\ h_{1,2} &=& {160 \pm 40\cdot 2\cdot \sqrt{ 5 } \over 2} \\ h_{1,2} &=& {160 \pm 80\cdot \sqrt{ 5 } \over 2} \\ h_{1,2} &=& 80 \pm 40\cdot \sqrt{ 5 } \\ h &=& 80 + 40\cdot \sqrt{ 5 } \\ h &=& 40\cdot( 2 + \sqrt{ 5 } ) \\ \mathbf{ h} & \mathbf{=} & \mathbf{169.442719100} \end{array} }\)

 

The tower is 169.4 m tall.

 

laugh

19.11.2015