Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+15

kann mir jemand bitte erklären wie man dieses Integral löst?

 

2. Möglichkeit - einfacher

 

237x1+x2 dx=723x1+x2 dxSubstitution : u=1+x2 dx du=2x dx dx= du2x723x1+x2 dx=723xu du2x=7223 duu Formel:  duu=ln(u)+c =72[ ln(u) ]23|u=1+x2237x1+x2 dx=72[ ln(1+x2) ]23237x1+x2 dx=72[ ln( 1+x2 ) ]23=72[ ln( 1+(2)2 )ln( 1+(3)2 ) ]=72[ ln( 1+4 )ln( 1+9 ) ]=72[ ln( 5 )ln( 10 ) ]=72ln(510)=72ln(12)=72[ln(1)ln(2)]ln(1)=0=72[0ln(2)]=72[ln(2)]=72ln(2)237x1+x2 dx=2.4260151320

laugh

.
20.11.2015
 #1
avatar+26396 
+15

kann mir jemand bitte erklären wie man dieses Integral löst?

237x1+x2 dx

 

237x1+x2 dx=723x1+x2 dxSubstitution 1: x=sinh(z) dx=cosh(z) dzcosh2(z)sinh2(z)=1cosh2(z)=1+sinh2(z)1+x2=1+sinh2(z)=cosh2(z)723x1+x2 dx=723sinh(z)cosh2(z)cosh(z) dz=723sinh(z)cosh(z) dzsinh(z)=ezez2cosh(z)=ez+ez2=723ezezez+ez dzSubstitution 2: u=ez+ez du=ez dz+(1)ez dz du=(ezez) dz=723 duu=7[ln(u)]23|u=ez+ez=7[ln(ez+ez)]23|ez+ez=2cosh(z)=7[ln( 2cosh(z) )]23|cosh2(z)=1+sinh2(z)=7[ln( 21+sinh2(z) )]23|sinh(z)=x=7[ln( 21+x2 )]23=7[ln( 21+x2 )]23=7[ln( 2(1+x2)12 )]23=7[ln2+ln( 2(1+x2)12 )]23=7[ln2ln2ln2 kürzt sich raus+ln( (1+x2)12 )]23=7[ln( (1+x2)12 )]23=7[12ln( 1+x2 )]23=72[ln( 1+x2 )]23237x1+x2 dx=72[ln( 1+x2 )]23237x1+x2 dx=72[ln( 1+x2 )]23=72[ln( 1+(2)2 )ln( 1+(3)2 )]=72[ln( 1+4 )ln( 1+9 )]=72[ln( 5 )ln( 10 )]=72ln(510)=72ln(12)=72[ln(1)ln(2)]ln(1)=0=72[0ln(2)]=72[ln(2)]=72ln(2)237x1+x2 dx=2.4260151320

 

laugh

20.11.2015
 #2
avatar+26396 
+15

Two guy wires are attached to the top of a telecommunications tower and anchored to the ground on opposite sides of the tower, as shown. The length of the guy wire is 20 m more than the height of the tower. The horizontal distance from the base of the tower to where the guy wire is anchored to the ground is one-half the height of the tower. How tall is the tower, to the nearest tenth of a metre?

 

Pythagoras:(h2)2+h2=(h+20)2h24+h2=h2+40h+400h24=40h+400h2440h400=0|4h2160h1600=0 ax2+bx+c=0x=b±b24ac2a x=b±b24ac2aa=1b=160c=1600h1,2=160±16024(1600)2h1,2=160±1602+401602h1,2=160±160(160+40)2h1,2=160±1602002h1,2=160±1600202h1,2=160±40202h1,2=160±40252h1,2=160±8052h1,2=80±405h=80+405h=40(2+5)h=169.442719100

 

The tower is 169.4 m tall.

 

laugh

19.11.2015
 #1
avatar+26396 
+10

Write an equation of the line that is perpendicular to the line through 9,10 and 3,-2 and passes through the x-intercept of that line.

 

line 1m(slope)= ?m=y2y1x2x1(x1=3, y1=2)(x2=9, y2=10)m=10(2)93m=126m=2mperpendicular=1mm=2mperpendicular=12line 1x(intercept)=xi= ?m=yy1xx1m=yiy1xix1(x1=3, y1=2)m=2yi=02=0(2)xi32=0(2)xi32=2xi3|:21=1xi3xi3=1xi=1+3xi=4Point x-intercept: (xi=4, yi=0)line perpendicular:mperpendicular=yyixxi(xi=4, yi=0)mperpendicular=1212=y0x412=yx4y=12(x4)y=12x(12)(4)y=12x+2

 

laugh

19.11.2015
 #1
avatar+26396 
+15
18.11.2015