heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26388 
+5

Ship A leaves port sailing north at a speed of 30 mph. A half hour later, Ship B leaves the same port sailing east at a speed of 35 mph. Let t (in hours) denote the time ship B has been at sea.

(a) Find an expression in terms of t giving the distance D between the two ships. 

(b) Use the expression obtained in part (a) to find the distance between the two ships 3 hr after Ship A has left port. (Round your answer two decimal places.)

 

 

(a)

\(\small{ \begin{array}{lrcl} & \vec{a} &=& \begin{pmatrix} 0 \\ 30\cdot (t+\frac12) \end{pmatrix} \\ & \vec{b} &=& \begin{pmatrix} 35\cdot t \\ 0 \end{pmatrix} \\ \\ \hline \\ \text{distance: } & \vec{d} &=& | \vec{a}-\vec{b} | \\ & \vec{d} &=& | \begin{pmatrix} 0 \\ 30\cdot (t+\frac12) \end{pmatrix} -\begin{pmatrix} 35\cdot t \\ 0 \end{pmatrix} | \\ & \vec{d} &=& | \begin{pmatrix} 0 -35\cdot t \\ 30\cdot (t+\frac12) -0 \end{pmatrix} | \\ & \vec{d} &=& | \begin{pmatrix} -35\cdot t \\ 30\cdot (t+\frac12) \end{pmatrix} | \\ & d &=& \sqrt{ 35^2\cdot t^2 + (30\cdot t + 15)^2 } \\ & d &=& \sqrt{ 35^2 \cdot t^2 + 30^2\cdot t^2 + 2\cdot 30 \cdot 15 \cdot t + 15^2 } \\ & d &=& \sqrt{ 15^2 + 30^2\cdot t + (30^2 + 35^2) \cdot t^2 } \\ \boxed{~ d = \sqrt{ 15^2 + 30^2\cdot t + (30^2 + 35^2) \cdot t^2 } ~} & \qquad t = 0 \rightarrow d = 15 ~\text{miles}\\ \end{array} } \)

 

 

(b)


\(\small{ \begin{array}{rcl} t+\frac12 &=& 3~\text{hours} \\ t &=& 3-\frac12\\ t &=& 2.5 ~\text{hours} \\ \\ \hline \\ d(2.5~\text{hours} ) &=& \sqrt{ 15^2 + 30^2\cdot 2.5 + (30^2 + 35^2) \cdot 2.5^2 } \\ d(2.5~\text{hours} ) &=& \sqrt{ 15^2 + 30^2\cdot 2.5 + 2125 \cdot 2.5^2 } \\ d(2.5~\text{hours} ) &=& \sqrt{ 15^2 + 30^2\cdot 2.5 + 2125 \cdot 6.25 } \\ d(2.5~\text{hours} ) &=& \sqrt{ 225 + 2250 + 13281.25 } \\ d(2.5~\text{hours} ) &=& \sqrt{ 15756.25 } \\ d(2.5~\text{hours} ) &=& 125.523902106 \\ \end{array} } \)

 

The distance between the two ships 3 hr after Ship A has left port is 125.52 miles

14.09.2015
 #3
avatar+26388 
+5

Find a formula for f(x), an exponential function such that f(-5) = 240 and f(40) = 580. f(x)=________

 

\(\small{ \begin{array}{lrcl} (1) & 580 &=& a\cdot b^{40} \\ (2) & 240 &=& a\cdot b^{-5} \\ \\ \hline \\ (1) : (2) & \frac{580}{240} &=& \frac{ b^{40} }{ b^{-5} } \\ & \frac{580}{240} &=& b^{40}\cdot b^{-5}\\ & \frac{580}{240} &=& b^{45}\\ & \frac{58}{24} &=& b^{45}\\ & \frac{29}{12} &=& b^{45}\\ & b &=& \sqrt[45]{\frac{29}{12}} \\ & b &=& \sqrt[45]{2.416\overline{6}} \\ & b &=& 2.416\overline{6}^{~(0.02\overline{2})}\\ & \mathbf{b} & \mathbf{=} & \mathbf{1.01980216076} \\ \\ \hline \\ & a &=& \frac{580} { b^{40} } \\ & a &=& \frac{580} { 2.19097343941 }\\ & \mathbf{a} & \mathbf{=} & \mathbf{264.722515374} \\ \\ \hline \\ & f(x) &=& a \cdot b^x \\ & f(x) &=& 264.722515374 \cdot 1.01980216076^x \end{array} }\)

 

\(\small{ \text{A function of the form }\\ f(x) = a\cdot b^x \\ \text{ can be re-written as } \\ f(x) = b^{x ± c} \\ \text{ by the use of logarithms and so is an exponential function.} } \)

 

\(\small{\text{$ \begin{array}{rcl} 264.722515374 \cdot 1.01980216076^x &=& 1.01980216076^{x+c} \\ 264.722515374 \cdot 1.01980216076^x &=& 1.01980216076^x \cdot 1.01980216076^{c} \\ 264.722515374 &=& 1.01980216076^{c} \qquad | \qquad \ln{()} \\ \ln{(264.722515374)}&=& c\cdot \ln{(1.01980216076)} \\ c &=& \frac{ \ln{(264.722515374)} } { \ln{(1.01980216076)} } \\ c &=& \frac{ 5.57868216559 } { 0.01960864845 } \\ \mathbf{c} & \mathbf{=} & \mathbf{284.501105731 } \\ \\ \hline \\ f(x) &=& b^{x+c} \\ \boxed{~f(x) = 1.01980216076^{x+284.501105731}~} \end{array} $}} \)

 

\(\small{\text{$ \begin{array}{rcl} f(-5) &=& 1.01980216076^{-5+284.501105731} \\ f(-5) &=& 1.01980216076^{279.501105731} \\ f(-5) &=& 1.01980216076^{279.501105731} \\ f(-5) &=& 240 \qquad \text{okay!} \\\\ f(40) &=& 1.01980216076^{40+284.501105731}\\ f(40) &=& 1.01980216076^{324.501105731}\\ f(40) &=& 1.01980216076^{324.501105731}\\ f(40) &=& 580 \qquad \text{okay!} \\\\ \end{array} $}} \)

 

laugh

14.09.2015