Find a formula for f(x), an exponential function such that f(-5) = 240 and f(40) = 580.
f(x)=________
Find a formula for f(x), an exponential function such that f(-5) = 240 and f(40) = 580. f(x)=________
(1)580=a⋅b40(2)240=a⋅b−5(1):(2)580240=b40b−5580240=b40⋅b−5580240=b455824=b452912=b45b=45√2912b=45√2.416¯6b=2.416¯6 (0.02¯2)b=1.01980216076a=580b40a=5802.19097343941a=264.722515374f(x)=a⋅bxf(x)=264.722515374⋅1.01980216076x
A function of the form f(x)=a⋅bx can be re-written as f(x)=bx±c by the use of logarithms and so is an exponential function.
264.722515374⋅1.01980216076x=1.01980216076x+c264.722515374⋅1.01980216076x=1.01980216076x⋅1.01980216076c264.722515374=1.01980216076c|ln()ln(264.722515374)=c⋅ln(1.01980216076)c=ln(264.722515374)ln(1.01980216076)c=5.578682165590.01960864845c=284.501105731f(x)=bx+c f(x)=1.01980216076x+284.501105731
f(−5)=1.01980216076−5+284.501105731f(−5)=1.01980216076279.501105731f(−5)=1.01980216076279.501105731f(−5)=240okay!f(40)=1.0198021607640+284.501105731f(40)=1.01980216076324.501105731f(40)=1.01980216076324.501105731f(40)=580okay!
Find a formula for f(x), an exponential function such that f(-5) = 240 and f(40) = 580. f(x)=________
(1)580=a⋅b40(2)240=a⋅b−5(1):(2)580240=b40b−5580240=b40⋅b−5580240=b455824=b452912=b45b=45√2912b=45√2.416¯6b=2.416¯6 (0.02¯2)b=1.01980216076a=580b40a=5802.19097343941a=264.722515374f(x)=a⋅bxf(x)=264.722515374⋅1.01980216076x
A function of the form f(x)=a⋅bx can be re-written as f(x)=bx±c by the use of logarithms and so is an exponential function.
264.722515374⋅1.01980216076x=1.01980216076x+c264.722515374⋅1.01980216076x=1.01980216076x⋅1.01980216076c264.722515374=1.01980216076c|ln()ln(264.722515374)=c⋅ln(1.01980216076)c=ln(264.722515374)ln(1.01980216076)c=5.578682165590.01960864845c=284.501105731f(x)=bx+c f(x)=1.01980216076x+284.501105731
f(−5)=1.01980216076−5+284.501105731f(−5)=1.01980216076279.501105731f(−5)=1.01980216076279.501105731f(−5)=240okay!f(40)=1.0198021607640+284.501105731f(40)=1.01980216076324.501105731f(40)=1.01980216076324.501105731f(40)=580okay!