radix

avatar
Benutzernameradix
Punkte14538
Membership
Stats
Fragen 53
Antworten 5045

 #1
avatar+14538 
0

Bitte die Terme  eindeutiger senden (ich hoffe, dass es so richtig ist !).

$${\frac{{\mathtt{A}}}{\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\mathtt{c}}{\mathtt{\,\times\,}}{\mathtt{d}} = {\mathtt{0}}$$       richtig so ?

$${\mathtt{A}}{\mathtt{\,-\,}}{\frac{{\mathtt{G}}}{\left({\mathtt{t}}{\mathtt{\,\small\textbf+\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}}{\mathtt{\,\times\,}}{\mathtt{b}}{\mathtt{\,\small\textbf+\,}}{\mathtt{c}}{\mathtt{\,\times\,}}{\mathtt{d}} = {\mathtt{0}}$$     richtig so?

 

1.)    $${\frac{{\mathtt{Ab}}}{\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}} = {\mathtt{\,-\,}}{\mathtt{cd}}$$                   $${\mathtt{Ab}} = {\mathtt{\,-\,}}\left({\mathtt{cd}}{\mathtt{\,\times\,}}\left({\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)\right)$$      $${\mathtt{\,-\,}}{\frac{{\mathtt{Ab}}}{{\mathtt{cd}}}} = {\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}$$     

        $${\mathtt{x}} = {\mathtt{p}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{Ab}}}{{\mathtt{cd}}}}$$

2.) $${\mathtt{A}}{\mathtt{\,-\,}}{\frac{{\mathtt{Gb}}}{\left({\mathtt{t}}{\mathtt{\,\small\textbf+\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}} = {\mathtt{\,-\,}}{\mathtt{cd}}$$      $${\frac{{\mathtt{Gb}}}{\left({\mathtt{t}}{\mathtt{\,\small\textbf+\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}} = {\mathtt{A}}{\mathtt{\,\small\textbf+\,}}{\mathtt{cd}}$$        $${\mathtt{t}}{\mathtt{\,\small\textbf+\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\mathtt{x}} = {\frac{{\mathtt{Gb}}}{\left({\mathtt{A}}{\mathtt{\,\small\textbf+\,}}{\mathtt{cd}}\right)}}$$

       $${\mathtt{x}} = {\mathtt{t}}{\mathtt{\,\small\textbf+\,}}{\mathtt{p}}{\mathtt{\,-\,}}{\frac{{\mathtt{Gb}}}{\left({\mathtt{A}}{\mathtt{\,\small\textbf+\,}}{\mathtt{cd}}\right)}}$$

Bitte noch einmal überprüfen !

Gruß radix !

24.06.2014
 #2
avatar+14538 
0
23.06.2014