heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

Solve for each variable:

-4x-6y+5z=21

3x+4y-2z=-15

-7x-5y+3z=15

$$\small{\text{$
\begin{array}{rrrrcrl}
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 3x&+4y&-2z&=&-15 \quad & | \quad \cdot \frac{4}{3}\\
(3) &-7x&-5y&+3z&=&15 \quad & | \quad \cdot \frac{4}{-7}\\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 3\cdot\frac{4}{3}x &+4\cdot \frac{4}{3} y&-2\cdot \frac{4}{3} z&=&-15\cdot \frac{4}{3} \quad &\\
(3) &-7\cdot \frac{4}{-7}x&-5\cdot \frac{4}{-7}y&+3\cdot \frac{4}{-7}z&=&15\cdot \frac{4}{-7} \quad &\\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 4x &+\frac{16}{3} y&-\frac{8}{3} z&=&-20 \quad &\\
(3) & 4x &+\frac{20}{7}y&-\frac{12}{7}z&=&-\frac{60}{7}\quad &\\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2)+(1) & 0 &-\frac{2}{3} y&+\frac{7}{3} z&=&1 \quad &\\
(3)+(1) & 0 &-\frac{22}{7}y&+\frac{23}{7}z&=&\frac{87}{7}\quad &\\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 0 &-\frac{2}{3} y&+\frac{7}{3} z&=&1 \quad &\\
(3) & 0 &-\frac{22}{7}y&+\frac{23}{7}z&=&\frac{87}{7}\quad & | \quad \cdot \frac{-7}{22}\cdot \frac{2}{3}\\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 0 &-\frac{2}{3} y&+\frac{7}{3} z&=&1 \quad &\\
(3) & 0 &-\frac{22}{7}\cdot \frac{-7}{22}\cdot\frac{2}{3}y&+\frac{23}{7} \cdot \frac{-7}{22}\cdot \frac{2}{3}z&=&\frac{87}{7} \cdot \frac{-7}{22}\cdot\frac{2}{3}\quad & \\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 0 &-\frac{2}{3} y&+\frac{7}{3} z&=&1 \quad &\\
(3) & 0 & +\frac{2}{3}y& -\frac{23}{22} \cdot \frac{2}{3}z&=&-\frac{87}{22}\cdot \frac{2}{3}\quad & \\
\\
\hline
\\
(1) & -4x&-6y&+5z&=&21 \quad &\\
(2) & 0 &-\frac{2}{3} y&+\frac{7}{3} z&=&1 \quad &\\
(3)+(2) & 0 & 0 & \frac{108}{66}z&=&-\frac{108}{66}\quad & \\
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
\frac{108}{66}z &=& -\frac{108}{66}\\\\
z &=& \dfrac{ -\frac{108}{66} } {\frac{108}{66}} \\\\
z &=& - \frac{108}{66 }\cdot \frac{66}{108} \\\\
\boxed{\, z = -1 \, }
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
-\frac{2}{3} y+\frac{7}{3} z&=&1 \\\\
-\frac{2}{3} y+\frac{7}{3} \cdot(-1)&=&1 \\\\
-\frac{2}{3} y-\frac{7}{3} &=&1 \\\\
-\frac{2}{3} y &=&1+\frac{7}{3} \\\\
-\frac{2}{3} y &=&\frac{10}{3} \\\\
y &=& \frac{10}{3}\cdot ( -\frac{3}{2} ) \\\\
\boxed{\, y = -5 \, }
\end{array}
$}}$$

$$\small{\text{$
\begin{array}{rcl}
-4x-6y+5z&=&21 \\\\
-4x-6\cdot(-5)+5\cdot(-1)&=&21 \\\\
-4x+30-5&=&21 \\\\
-4x+25&=&21 \\\\
-4x &=&-4 \\\\
4x &=&4 \\\\
\boxed{\, x= 1 \, }
\end{array}
$}}$$

.
29.04.2015
 #2
avatar+26387 
+10

Find the value of C for the pic below

$$0.828= \dfrac{
\left(\dfrac{2-c}{2}\right)^{\dfrac{1}{2}}
\cdot
\left( \dfrac{4-c}{2}\right)^{\dfrac{1}{2}}
}
{c}
\cdot
\underbrace{
\left( \dfrac{2}{3.1}\right)^{
\underbrace{ \left(\dfrac{1}{2}+\dfrac{1}{2}-1 \right)
}_{=0} }
}_{=1}
\qquad \boxed{a^0 = 1}$$

$$\small{\text{
$
\begin{array}{rcl}
0.828 &=& \dfrac{
\left(\dfrac{2-c}{2}\right)^{\dfrac{1}{2}}
\cdot \left( \dfrac{4-c}{2}\right)^{\dfrac{1}{2}}
}
{c}\cdot 1\\ \\
0.828 &=& \dfrac{
\left(\dfrac{2-c}{2}\right)^{\dfrac{1}{2}}
\cdot
\left( \dfrac{4-c}{2}\right)^{\dfrac{1}{2}}
}
{c}\\\\
0.828\cdot c &=& \left(\dfrac{2-c}{2}\right)^{\dfrac{1}{2}}
\cdot
\left( \dfrac{4-c}{2}\right)^{\dfrac{1}{2}}\\\\
0.828\cdot c &=& \sqrt{ \dfrac{2-c}{2} }
\cdot \sqrt{ \dfrac{4-c}{2}\right) } \quad | \quad ()^2\\\\
0.828^2\cdot c^2 &=&
\left( \dfrac{2-c}{2} \right)
\cdot
\left( \dfrac{4-c}{2}\right) \\\\
4\cdot 0.828^2\cdot c^2 &=&
\left( 2-c \right)
\cdot
\left( 4-c \right) \\\\
2.742336 \cdot c^2 &=& 8-2c-4c+c^2 \\\\
2.742336 \cdot c^2 &=& 8-6c+c^2 \\\\
2.742336 \cdot c^2 - c^2 + 6c - 8 &=& 0 \\\\
c^2 \cdot (2.742336 -1 ) + 6c - 8 &=& 0 \\\\
1.742336 \cdot c^2 + 6c - 8 &=& 0 \\\\
c_{1,2} &=& \dfrac{-6 \pm \sqrt{6^2-4\cdot 1.742336 \cdot (-8) } }{ 2\cdot 1.742336 } \\\\
c_{1,2} &=& \dfrac{-6 \pm \sqrt{36+55.7547520000} }{ 2\cdot 1.742336 } \\\\
c_{1,2} &=& \dfrac{-6 \pm \sqrt{91.7547520000} }{ 2\cdot 1.742336 } \\\\
c_{1,2} &=& \dfrac{-6 \pm 9.57887007950}{ 2\cdot 1.742336 } \\\\
c_{1,2} &=& \dfrac{-6 \pm 9.57887007950}{ 3.484672 } \\\\
\end{array}
$}}$$

$$\small{\text{
\begin{array}{rcl|rcl}
$
c_1 &=& \dfrac{-6 + 9.57887007950}{ 3.484672 } \quad & \quad
c_2 &=& \dfrac{-6 - 9.57887007950}{ 3.484672 } \\\\
c_1 &=& 1.02703212225 \quad & \quad
c_2 &=& -4.47068478167$ no solution $
$
\end{array}
}}\\\\
c = 1.02703212225$$

.
28.04.2015