Rotate the axis to eliminate the xy term for 2x^2-72xy+23y^2-80x-60y-125=0
$$\small{\text{$
\begin{array}{ccccccccccc}
\textcolor[rgb]{1,0,0}{2}\cdot x^2 &+& \textcolor[rgb]{1,0,0}{23} \cdot y^2 &-& \textcolor[rgb]{1,0,0}{72} \cdot x \cdot y &-& \textcolor[rgb]{1,0,0}{80} \cdot x &-& \textcolor[rgb]{1,0,0}{60} \cdot y &=& 125\\
\textcolor[rgb]{1,0,0}{a} \cdot x^2 &+& \textcolor[rgb]{1,0,0}{b} \cdot y^2 &+& \textcolor[rgb]{1,0,0}{2\cdot c} \cdot x \cdot y &+& \textcolor[rgb]{1,0,0}{2\cdot d} \cdot x &+& \textcolor[rgb]{1,0,0}{2\cdot e} \cdot y &=& 125\\
\end{array}
$}}$$
$$\\
\small{\text{$
\begin{array}{rcr}
a &=& 2 \\
b &=& 23 \\
c &=& -36 \\
d &=& -40 \\
e &=& -30
\end{array}
$}}$$
$$\boxed{ \small{\text{$
\tan{(\varphi)}=\dfrac{ \sqrt{ (a-b)^2+4\cdot c^2 }-(a-b) } {2\cdot c}
$}} }\\\\
\small{\text{$
\tan{(\varphi)}=\dfrac{ \sqrt{ (2-23)^2+4\cdot (-36)^2 }-(2-23) } {2\cdot (-36) }
= \dfrac{ \sqrt{ (-21)^2+4\cdot (-36)^2 }+21 } { -72 }
$}}\\\\
\small{\text{$
\tan{(\varphi)}
= \dfrac{ \sqrt{ 441+4\cdot 1296 }+21 } { -72 }
$}}\\\\
\small{\text{$
\tan{(\varphi)}
= \dfrac{ 96 } { -72 }
$}}\\\\
\small{\text{$
\tan{(\varphi)}
= - \dfrac{ 4 } { 3 }
$}}\\$$
$$\boxed{
\small{\text{
$
\sin{ (\varphi) }
=\dfrac { \tan{(\varphi)} }
{ \sqrt{1+\tan{(\varphi)}^2 } } \qquad
\cos{ (\varphi) }
=\dfrac { 1 }
{ \sqrt{1+\tan{(\varphi)}^2 } }
$}}
}\\\\
\small{\text{
$
\sin{ (\varphi) }
=\dfrac { -\frac{4}{3} }
{ \sqrt{1+ (-\frac{4}{3} )^2 } } \qquad
\cos{ (\varphi) }
=\dfrac { 1 }
{ \sqrt{1+ (-\frac{4}{3} )^2 } }
$}}\\\
\small{\text{
$
\sin{ (\varphi) }
=-\dfrac { 4 } { 5 } \qquad
\cos{ (\varphi) }=\dfrac { 3 } { 5 }
$}}$$
Rotation: $$\boxed{
\small{\text{
$
\begin{array}{rcl}
x &=& x'\cdot \cos{(\varphi)}-y'\cdot \sin{(\varphi)} \\
y &=& x'\cdot \sin{(\varphi)}+y'\cdot \cos{(\varphi)}
\end{array}
$}}}$$
$$\small{\text{
$
\begin{array}{rcl}
x &=& x'\cdot \dfrac{3}{5}+y'\cdot \dfrac{4}{5} \\
y &=& -x'\cdot \dfrac{4}{5}+y'\cdot \dfrac{3}{5}
\end{array}
$}}$$
We substitute:
$$\\\small{\text{
$
x^2 = \left(
x'\cdot \dfrac{3}{5}+y'\cdot \dfrac{4}{5}
\right)^2
= \frac{9}{25}x'^2 + 2 \frac{12}{25}x'y'+\frac{16}{25}y'^2
$}}\\
\small{\text{
$
y^2 = \left(
-x'\cdot \dfrac{4}{5}+y'\cdot \dfrac{3}{5}
\right)^2
=\frac{16}{25}x'^2 - 2 \frac{12}{25}x'y'+\frac{9}{25}y'^2
$}}\\
\small{\text{
$
xy =\left(
x'\cdot \dfrac{3}{5}+y'\cdot \dfrac{4}{5}
\right)\cdot
\left(
-x'\cdot \dfrac{4}{5}+y'\cdot \dfrac{3}{5}
\right)
= -\frac{12}{25}x'^2 + \frac{12}{25}y'^2 - \frac{7} {25} \cdot x'y'
$}}\\$$
$$\small{\text{$
\begin{array}{rcl}
2\cdot (\frac{9}{25}x'^2 + 2 \frac{12}{25}x'y'+\frac{16}{25}y'^2) \\\\
+ 23 \cdot (\frac{16}{25}x'^2 - 2 \frac{12}{25}x'y'+\frac{9}{25}y'^2) \\\\
-72 \cdot (-\frac{12}{25}x'^2 +\frac{12}{25}y'^2 - \frac{7}{25} \cdot x'y') \\\\
- 80 \cdot ( x'\cdot \dfrac{3}{5}+y'\cdot \dfrac{4}{5} ) \\\\
-60 \cdot (-x'\cdot \dfrac{4}{5}-y'\cdot \dfrac{3}{5}) &=& 125
\end{array}
$}}$$
$$\small{\text{$
\begin{array}{rcl}
\frac{18}{25}x'^2 +\frac{32}{25}y'^2 + \frac{368}{25}x'^2 +\frac{207}{25}y'^2+\frac{864}{25}x'^2 -\frac{864}{25}y'^2
-\frac{240}{5} x' - \frac{320}{5} y'
+\frac{240}{5} x'+\frac{180}{5} y' &=& 125\\\\
50\cdot x'^2 -25\cdot y'^2 +0 \cdot x' -28\cdot y' &=& 125\\\\
50\cdot x'^2 -25\cdot y'^2 -28\cdot y' &=& 125
\end{array}
$}}$$