Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #6
avatar+26396 
+5

Rotate the axis to eliminate the xy term for 2x^2-72xy+23y^2-80x-60y-125=0

2x2+23y272xy80x60y=125ax2+by2+2cxy+2dx+2ey=125

a=2b=23c=36d=40e=30

\boxed{ \small{\text{$  \tan{(\varphi)}=\dfrac{ \sqrt{ (a-b)^2+4\cdot c^2 }-(a-b) } {2\cdot c}  $}} }\\\\  \small{\text{$  \tan{(\varphi)}=\dfrac{ \sqrt{ (2-23)^2+4\cdot (-36)^2 }-(2-23) } {2\cdot (-36) }  = \dfrac{ \sqrt{ (-21)^2+4\cdot (-36)^2 }+21 } { -72 }  $}}\\\\  \small{\text{$  \tan{(\varphi)}  = \dfrac{ \sqrt{ 441+4\cdot 1296 }+21 } { -72 }  $}}\\\\  \small{\text{$  \tan{(\varphi)}  = \dfrac{ 96 } { -72 }  $}}\\\\  \small{\text{$  \tan{(\varphi)}  = - \dfrac{ 4 } { 3 }  $}}\\

\boxed{  \small{\text{  $  \sin{ (\varphi) }  =\dfrac { \tan{(\varphi)} }   { \sqrt{1+\tan{(\varphi)}^2 } } \qquad  \cos{ (\varphi) }  =\dfrac { 1 }   { \sqrt{1+\tan{(\varphi)}^2 } }  $}}  }\\\\  \small{\text{  $  \sin{ (\varphi) }  =\dfrac { -\frac{4}{3} }   { \sqrt{1+ (-\frac{4}{3} )^2 } } \qquad  \cos{ (\varphi) }  =\dfrac { 1 }   { \sqrt{1+ (-\frac{4}{3} )^2 } }  $}}\\\  \small{\text{  $  \sin{ (\varphi) }  =-\dfrac { 4 } { 5 } \qquad  \cos{ (\varphi) }=\dfrac { 3 } { 5 }  $}}

Rotation: \boxed{  \small{\text{  $  \begin{array}{rcl}  x &=& x'\cdot \cos{(\varphi)}-y'\cdot \sin{(\varphi)} \\  y &=& x'\cdot \sin{(\varphi)}+y'\cdot \cos{(\varphi)}  \end{array}  $}}}

 x=x35+y45y=x45+y35

We substitute:

 x2=(x35+y45)2=925x2+21225xy+1625y2 y2=(x45+y35)2=1625x221225xy+925y2 xy=(x35+y45)(x45+y35)=1225x2+1225y2725xy

2(925x2+21225xy+1625y2)+23(1625x221225xy+925y2)72(1225x2+1225y2725xy)80(x35+y45)60(x45y35)=125

1825x2+3225y2+36825x2+20725y2+86425x286425y22405x3205y+2405x+1805y=12550x225y2+0x28y=12550x225y228y=125

 

25.04.2015
 #1
avatar+26396 
+8

Wie löse ich die folgenden Potenzgleichungen? 

3∙5^2x=7^(x+4)

352x=7(x+4)352x=7x7452x7x=743|log10log10(52x7x)=log10(743)log10(52x)log10(7x)=log10(743)2xlog10(5)xlog10(7)=log10(743)x[2log10(5)log10(7)]=log10(743)x[log10(52)log10(7)]=log10(743)x[log10(527)]=log10(743)x=log10(743)log10(527)x=log10(800.333333333)log10(3.57142857143)x=2.903270905340.55284196866x=5.25153854073

.
24.04.2015
 #1
avatar+26396 
+10

How to find x in the question Sinh(x-3)=1 even if i expand it into e terms i cant seem to get it

I.

 sinh(x3)=1|sinh1x3=sinh1(1)x=3+sinh1(1)x=3+0.88137358702x=3.88137358702 

II.

\boxed{  \small{\text{   $  \sinh(x)=\frac{1}{2}\cdot \left( e^x - e^{-x}\right)  \qquad \sinh(x-3)=\frac{1}{2}\cdot \left( e^{x-3} - e^{-(x-3)}\right)  $  }}}

sinh(x3)=112(ex3e(x3))=1ex3e(x3)=2ex31ex3=2|u=ex3u1u=2|uu21=2uu22u1=0u1,2=2±44(1)2u1,2=2±242u1,2=2±222u1,2=1±2

u=ex3|lnln(u)=(x3)ln(e)|ln(e)=1ln(u)=x3x=3+ln(u) 

u1=1+2u2=12x1=3+ln(u1)x2=3+ln(u2)x1=3+ln(1+(2))x2=3+ln(1(2)<0 no solution!)x=3+ln(1+(2))x=3+ln(2.41421356237)x=3+0.88137358702x=3.88137358702 

.
23.04.2015
 #2
avatar+26396 
+5

How many miles are in a kilometer?

see: http://web2.0rechner.de/#1[km] to [mi] and push the "=" Button

1 kilometer = 0.621371192237334[mi]

23.04.2015