Rotate the axis to eliminate the xy term for 2x^2-72xy+23y^2-80x-60y-125=0
2⋅x2+23⋅y2−72⋅x⋅y−80⋅x−60⋅y=125a⋅x2+b⋅y2+2⋅c⋅x⋅y+2⋅d⋅x+2⋅e⋅y=125
a=2b=23c=−36d=−40e=−30
\boxed{ \small{\text{$ \tan{(\varphi)}=\dfrac{ \sqrt{ (a-b)^2+4\cdot c^2 }-(a-b) } {2\cdot c} $}} }\\\\ \small{\text{$ \tan{(\varphi)}=\dfrac{ \sqrt{ (2-23)^2+4\cdot (-36)^2 }-(2-23) } {2\cdot (-36) } = \dfrac{ \sqrt{ (-21)^2+4\cdot (-36)^2 }+21 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = \dfrac{ \sqrt{ 441+4\cdot 1296 }+21 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = \dfrac{ 96 } { -72 } $}}\\\\ \small{\text{$ \tan{(\varphi)} = - \dfrac{ 4 } { 3 } $}}\\
\boxed{ \small{\text{ $ \sin{ (\varphi) } =\dfrac { \tan{(\varphi)} } { \sqrt{1+\tan{(\varphi)}^2 } } \qquad \cos{ (\varphi) } =\dfrac { 1 } { \sqrt{1+\tan{(\varphi)}^2 } } $}} }\\\\ \small{\text{ $ \sin{ (\varphi) } =\dfrac { -\frac{4}{3} } { \sqrt{1+ (-\frac{4}{3} )^2 } } \qquad \cos{ (\varphi) } =\dfrac { 1 } { \sqrt{1+ (-\frac{4}{3} )^2 } } $}}\\\ \small{\text{ $ \sin{ (\varphi) } =-\dfrac { 4 } { 5 } \qquad \cos{ (\varphi) }=\dfrac { 3 } { 5 } $}}
Rotation: \boxed{ \small{\text{ $ \begin{array}{rcl} x &=& x'\cdot \cos{(\varphi)}-y'\cdot \sin{(\varphi)} \\ y &=& x'\cdot \sin{(\varphi)}+y'\cdot \cos{(\varphi)} \end{array} $}}}
x=x′⋅35+y′⋅45y=−x′⋅45+y′⋅35
We substitute:
x2=(x′⋅35+y′⋅45)2=925x′2+21225x′y′+1625y′2 y2=(−x′⋅45+y′⋅35)2=1625x′2−21225x′y′+925y′2 xy=(x′⋅35+y′⋅45)⋅(−x′⋅45+y′⋅35)=−1225x′2+1225y′2−725⋅x′y′
2⋅(925x′2+21225x′y′+1625y′2)+23⋅(1625x′2−21225x′y′+925y′2)−72⋅(−1225x′2+1225y′2−725⋅x′y′)−80⋅(x′⋅35+y′⋅45)−60⋅(−x′⋅45−y′⋅35)=125
1825x′2+3225y′2+36825x′2+20725y′2+86425x′2−86425y′2−2405x′−3205y′+2405x′+1805y′=12550⋅x′2−25⋅y′2+0⋅x′−28⋅y′=12550⋅x′2−25⋅y′2−28⋅y′=125

