+0  
 
0
971
2
avatar

n über k

 28.04.2015
 #1
avatar+26387 
0

n über k

$$\small{\text{
$
\begin{array}{rcl}
\left(\begin{array}{c}n\\
k
\end{array} \right)
&=& \dfrac{n!}{k!\cdot(n-k)!}\\\\
&=&\dfrac{n\cdot(n-1)\cdot(n-2) \cdots (n-(k-1)) }{k!} \\\\
&=& \left( \dfrac {n}{1} \right) \cdot
\left( \dfrac {n-1}{2}\right) \cdot
\left( \dfrac {n-2}{3}\right) \cdots
\left( \dfrac {(n-(k-1)) }{k} \right)
\end{array}
$}}$$

 28.04.2015
 #2
avatar+14538 
0

Hallo Anonymous,


es lohnt sich immer , mal im Internet nachzusehen, z.B. hier:


http://www.frustfrei-lernen.de/mathematik/binomialkoeffizient.html


http://www.jetzt-rechnen.de/Mathematik/Binomialkoeffizient.html#


Gruß radix !
 28.04.2015

5 Benutzer online

avatar
avatar