Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26396 
+5

There are some counters in a bag 5 red 6 blue and 1 green. Work out the probability that Jim picks out a counter that is not red ?

\textcolor[rgb]{150,0,0}{ 5 ~ \rm{red} } ~ bags  +\textcolor[rgb]{0,0,150}{ 6 ~ \rm{blue} } ~ bags  +\textcolor[rgb]{0,150,0}{ 1 ~ \rm{green} } ~ bag  = 12 ~ bags

The probability that Jim picks out a counter that is not red is:

\small{\text{$  \begin{array}{l}  \dfrac  {  \begin{pmatrix} \textcolor[rgb]{150,0,0}{r}  \\ 0 \end{pmatrix}\cdot  \begin{pmatrix} \textcolor[rgb]{0,0,150}{b}  \\ 1 \end{pmatrix}\cdot  \begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 0 \end{pmatrix}  +  \begin{pmatrix} \textcolor[rgb]{150,0,0}{r}  \\ 0 \end{pmatrix}\cdot  \begin{pmatrix} \textcolor[rgb]{0,0,150}{b}  \\ 0 \end{pmatrix}\cdot  \begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}}  {  \begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+  \textcolor[rgb]{0,0,150}{b}+  \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}   }\\\\  =  \dfrac  {  1 \cdot  \begin{pmatrix} \textcolor[rgb]{0,0,150}{b} \\ 1 \end{pmatrix}\cdot 1   +  1 \cdot 1 \cdot  \begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}}  {  \begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+  \textcolor[rgb]{0,0,150}{b}+  \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}   }\\\\  =  \dfrac  {   \begin{pmatrix} \textcolor[rgb]{0,0,150}{b} \\ 1 \end{pmatrix}+  \begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}   }  {  \begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+  \textcolor[rgb]{0,0,150}{b}+  \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}   }\\\\  =  \dfrac{ \textcolor[rgb]{0,0,150}{b}+  \textcolor[rgb]{0,150,0}{g} }{ \textcolor[rgb]{150,0,0}{r}+  \textcolor[rgb]{0,0,150}{b}+  \textcolor[rgb]{0,150,0}{g} } \\\\  =  \dfrac{ \textcolor[rgb]{0,0,150}{6}+  \textcolor[rgb]{0,150,0}{1} }{ \textcolor[rgb]{150,0,0}{5}+  \textcolor[rgb]{0,0,150}{6}+  \textcolor[rgb]{0,150,0}{1} } \\\\  =  \dfrac{ 7 }{ 12 }  \end{array}  $}}

.
30.04.2015
 #1
avatar+26396 
+13

12(33)+11(43)+10(53)++2(133)+(143)=?

 

12(33)+11(43)+10(53)+9(63)+8(73)+7(83)+6(93)+5(103)+4(113)+3(123)+2(133)+1(143)=(44)+(54)+(64)+(74)+(84)+(94)+(104)+(114)+(124)+(134)+(144)+(154)=(165)=16!5!11!=12131415165!=121314151612345=(123)13(142)(155)(164)=413734=131621=4368

 

see Hockey Stick Pattern: http://ptri1.tripod.com/

If a diagonal of numbers of any length is selected starting at any of the 1's bordering the sides of the triangle and ending on any number inside the triangle on that diagonal, the sum of the numbers inside the selection is equal to the number below the end of the selection that is not on the same diagonal itself. If you don't understand that, look at the drawing.
1+6+21+56 = 84
1+7+28+84+210+462+924 = 1716
1+12 = 13

30.04.2015
 #1
avatar+26396 
+10

\[(50)+(51)+(62)+(71)+(83)+(92)+(104)+(113)\]=495

see: http://web2.0calc.com/#binom(5,0)+binom(5,1)+binom(6,2)+binom(7,1)+binom(8,3)+binom(9,2)+binom(10,4)+binom(11,3) and push the "=" Button

 

 (00)=1(10)=1(11)=1(20)=1(21)=2(22)=1(30)=1(31)=3(32)=3(33)=1(40)=1(41)=4(42)=6(43)=4(44)=1(50)=1(51)=5(52)=10(53)=10(54)=5(55)=1(60)=1(61)=6(62)=15(63)=20(64)=15(65)=6(66)=1(70)=1(71)=7(72)=21(73)=35(74)=35(75)=21(76)=7(77)=1(80)=1(81)=8(82)=28(83)=56(84)=70(85)=56(86)=28(87)=8(88)=1(90)=1(91)=9(92)=36(93)=84(94)=126(95)=126(96)=84(97)=36(98)=9(99)=1(100)=1(101)=10(102)=45(103)=120(104)=210(105)=252(106)=210(107)=120(108)=45(109)=10(1010)=1(110)=1(111)=11(112)=55(113)=165(114)=330(115)=462(116)=462(117)=330(118)=165(119)=55(1110)=11(1111)=1

 

 (50)+(51)+(62)+(71)+(83)+(92)+(104)+(113)=1+5+15+7+56+36+210+165=495

.
30.04.2015