heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
+5

There are some counters in a bag 5 red 6 blue and 1 green. Work out the probability that Jim picks out a counter that is not red ?

$$\textcolor[rgb]{150,0,0}{ 5 ~ \rm{red} } ~ bags
+\textcolor[rgb]{0,0,150}{ 6 ~ \rm{blue} } ~ bags
+\textcolor[rgb]{0,150,0}{ 1 ~ \rm{green} } ~ bag
= 12 ~ bags$$

The probability that Jim picks out a counter that is not red is:

$$\small{\text{$
\begin{array}{l}
\dfrac
{
\begin{pmatrix} \textcolor[rgb]{150,0,0}{r}
\\ 0 \end{pmatrix}\cdot
\begin{pmatrix} \textcolor[rgb]{0,0,150}{b}
\\ 1 \end{pmatrix}\cdot
\begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 0 \end{pmatrix}
+
\begin{pmatrix} \textcolor[rgb]{150,0,0}{r}
\\ 0 \end{pmatrix}\cdot
\begin{pmatrix} \textcolor[rgb]{0,0,150}{b}
\\ 0 \end{pmatrix}\cdot
\begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}}
{
\begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+
\textcolor[rgb]{0,0,150}{b}+
\textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}
}\\\\
=
\dfrac
{
1 \cdot
\begin{pmatrix} \textcolor[rgb]{0,0,150}{b} \\ 1 \end{pmatrix}\cdot 1
+
1 \cdot 1 \cdot
\begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}}
{
\begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+
\textcolor[rgb]{0,0,150}{b}+
\textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}
}\\\\
=
\dfrac
{
\begin{pmatrix} \textcolor[rgb]{0,0,150}{b} \\ 1 \end{pmatrix}+
\begin{pmatrix} \textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}
}
{
\begin{pmatrix} \textcolor[rgb]{150,0,0}{r}+
\textcolor[rgb]{0,0,150}{b}+
\textcolor[rgb]{0,150,0}{g} \\ 1 \end{pmatrix}
}\\\\
=
\dfrac{ \textcolor[rgb]{0,0,150}{b}+
\textcolor[rgb]{0,150,0}{g} }{ \textcolor[rgb]{150,0,0}{r}+
\textcolor[rgb]{0,0,150}{b}+
\textcolor[rgb]{0,150,0}{g} } \\\\
=
\dfrac{ \textcolor[rgb]{0,0,150}{6}+
\textcolor[rgb]{0,150,0}{1} }{ \textcolor[rgb]{150,0,0}{5}+
\textcolor[rgb]{0,0,150}{6}+
\textcolor[rgb]{0,150,0}{1} } \\\\
=
\dfrac{ 7 }{ 12 }
\end{array}
$}}$$

.
30.04.2015
 #1
avatar+26387 
+13

$$\mathbf{12\binom{3}{3} + 11\binom{4}{3} + 10\binom{5}{3} + \cdots + 2\binom{13}{3} +\binom{14}{3} = \;?}$$

 

$$\small{\text{$
\begin{array}{l}
\mathbf{
12\binom{3}{3} +
11\binom{4}{3} +
10\binom{5}{3} +
9\binom{6}{3} +
8\binom{7}{3} +
7\binom{8}{3} +
6\binom{9}{3} +
5\binom{10}{3} +
4\binom{11}{3} +
3\binom{12}{3} +
2\binom{13}{3} +
1\binom{14}{3} } \\ \\
=
\mathbf{
\binom{4}{4} +
\binom{5}{4} +
\binom{6}{4} +
\binom{7}{4} +
\binom{8}{4} +
\binom{9}{4} +
\binom{10}{4} +
\binom{11}{4} +
\binom{12}{4} +
\binom{13}{4} +
\binom{14}{4} +
\binom{15}{4}
}\\\\
=
\mathbf{
\binom{16}{5}
}\\\\
=
\mathbf{
\dfrac{16!}{5!\cdot 11!}
}\\\\
=
\mathbf{
\dfrac{12\cdot 13\cdot 14\cdot 15\cdot 16}{5!}
}\\\\
=
\mathbf{
\dfrac{12\cdot 13\cdot 14\cdot 15\cdot 16}{1\cdot 2\cdot 3\cdot 4\cdot 5}
}\\\\
=
\mathbf{
\left(\dfrac{12}{3}\right)\cdot 13 \cdot
\left(\dfrac{14}{2}\right)\cdot
\left(\dfrac{15}{5}\right)\cdot
\left(\dfrac{16}{4}\right)
}\\\\
=
\mathbf{4 \cdot 13 \cdot 7 \cdot 3 \cdot 4}\\\\
=
\mathbf{13 \cdot 16 \cdot 21}\\\\
=
\mathbf{4368}
\end{array}
$}}$$

 

see Hockey Stick Pattern: http://ptri1.tripod.com/

If a diagonal of numbers of any length is selected starting at any of the 1's bordering the sides of the triangle and ending on any number inside the triangle on that diagonal, the sum of the numbers inside the selection is equal to the number below the end of the selection that is not on the same diagonal itself. If you don't understand that, look at the drawing.
1+6+21+56 = 84
1+7+28+84+210+462+924 = 1716
1+12 = 13

30.04.2015
 #1
avatar+26387 
+10

$$\[\binom50+\binom51+\binom62+\binom71+\binom83+\binom92+\binom{10}4+\binom{11}3\] = 495$$

see: http://web2.0calc.com/#binom(5,0)+binom(5,1)+binom(6,2)+binom(7,1)+binom(8,3)+binom(9,2)+binom(10,4)+binom(11,3) and push the "=" Button

 

$$\small{\text{
$
\begin{array}{cccccccccccccccccccccccccc}
&&&&&&&&&&&\begin{pmatrix} 0\\0\end{pmatrix}=1\\
&&&&&&&&&&\begin{pmatrix} 1\\0\end{pmatrix}=1&&
\begin{pmatrix} 1\\1\end{pmatrix}=1\\
&&&&&&&&&\begin{pmatrix} 2\\0\end{pmatrix}=1&
&\begin{pmatrix} 2\\1\end{pmatrix}=2&
&\begin{pmatrix} 2\\2\end{pmatrix}=1\\
&&&&&&&&\begin{pmatrix} 3\\0\end{pmatrix}=1&&
\begin{pmatrix} 3\\1\end{pmatrix}=3&&
\begin{pmatrix} 3\\2\end{pmatrix}=3&&
\begin{pmatrix} 3\\3\end{pmatrix}=1\\
&&&&&&&\begin{pmatrix} 4\\0\end{pmatrix}=1&
&\begin{pmatrix} 4\\1\end{pmatrix}=4&
&\begin{pmatrix} 4\\2\end{pmatrix}=6&
&\begin{pmatrix} 4\\3\end{pmatrix}=4&
&\begin{pmatrix} 4\\4\end{pmatrix}=1\\
&&&&&&\begin{pmatrix} 5\\0\end{pmatrix}=1&&
\begin{pmatrix} 5\\1\end{pmatrix}=5&&
\begin{pmatrix} 5\\2\end{pmatrix}=10&&
\begin{pmatrix} 5\\3\end{pmatrix}=10&&
\begin{pmatrix} 5\\4\end{pmatrix}=5&&
\begin{pmatrix} 5\\5\end{pmatrix}=1\\
&&&&&\begin{pmatrix} 6\\0\end{pmatrix}=1&
&\begin{pmatrix} 6\\1\end{pmatrix}=6&
&\begin{pmatrix} 6\\2\end{pmatrix}=15&
&\begin{pmatrix} 6\\3\end{pmatrix}=20&
&\begin{pmatrix} 6\\4\end{pmatrix}=15&
&\begin{pmatrix} 6\\5\end{pmatrix}=6&
&\begin{pmatrix} 6\\6\end{pmatrix}=1\\
&&&&\begin{pmatrix} 7\\0\end{pmatrix}=1&&
\begin{pmatrix} 7\\1\end{pmatrix}=7&&
\begin{pmatrix} 7\\2\end{pmatrix}=21&&
\begin{pmatrix} 7\\3\end{pmatrix}=35&&
\begin{pmatrix} 7\\4\end{pmatrix}=35&&
\begin{pmatrix} 7\\5\end{pmatrix}=21&&
\begin{pmatrix} 7\\6\end{pmatrix}=7&&
\begin{pmatrix} 7\\7\end{pmatrix}=1\\
&&&\begin{pmatrix} 8\\0\end{pmatrix}=1&
&\begin{pmatrix} 8\\1\end{pmatrix}=8&
&\begin{pmatrix} 8\\2\end{pmatrix}=28&
&\begin{pmatrix} 8\\3\end{pmatrix}=56&
&\begin{pmatrix} 8\\4\end{pmatrix}=70&
&\begin{pmatrix} 8\\5\end{pmatrix}=56&
&\begin{pmatrix} 8\\6\end{pmatrix}=28&
&\begin{pmatrix} 8\\7\end{pmatrix}=8&
&\begin{pmatrix} 8\\8\end{pmatrix}=1\\
&&\begin{pmatrix} 9\\0\end{pmatrix}=1&&
\begin{pmatrix} 9\\1\end{pmatrix}=9&&
\begin{pmatrix} 9\\2\end{pmatrix}=36&&
\begin{pmatrix} 9\\3\end{pmatrix}=84&&
\begin{pmatrix} 9\\4\end{pmatrix}=126&&
\begin{pmatrix} 9\\5\end{pmatrix}=126&&
\begin{pmatrix} 9\\6\end{pmatrix}=84&&
\begin{pmatrix} 9\\7\end{pmatrix}=36&&
\begin{pmatrix} 9\\8\end{pmatrix}=9&&
\begin{pmatrix} 9\\9\end{pmatrix}=1\\
&\begin{pmatrix} 10\\0\end{pmatrix}=1&
&\begin{pmatrix} 10\\1\end{pmatrix}=10&
&\begin{pmatrix} 10\\2\end{pmatrix}=45&
&\begin{pmatrix} 10\\3\end{pmatrix}=120&
&\begin{pmatrix} 10\\4\end{pmatrix}=210&
&\begin{pmatrix} 10\\5\end{pmatrix}=252&
&\begin{pmatrix} 10\\6\end{pmatrix}=210&
&\begin{pmatrix} 10\\7\end{pmatrix}=120&
&\begin{pmatrix} 10\\8\end{pmatrix}=45&
&\begin{pmatrix} 10\\9\end{pmatrix}=10&
&\begin{pmatrix} 10\\10\end{pmatrix}=1\\
\begin{pmatrix} 11\\0\end{pmatrix}=1&&
\begin{pmatrix} 11\\1\end{pmatrix}=11&&
\begin{pmatrix} 11\\2\end{pmatrix}=55&&
\begin{pmatrix} 11\\3\end{pmatrix}=165&&
\begin{pmatrix} 11\\4\end{pmatrix}=330&&
\begin{pmatrix} 11\\5\end{pmatrix}=462&&
\begin{pmatrix} 11\\6\end{pmatrix}=462&&
\begin{pmatrix} 11\\7\end{pmatrix}=330&&
\begin{pmatrix} 11\\8\end{pmatrix}=165&&
\begin{pmatrix} 11\\9\end{pmatrix}=55&&
\begin{pmatrix} 11\\10\end{pmatrix}=11&&
\begin{pmatrix} 11\\11\end{pmatrix}=1
\end{array}
$}}$$

 

$$\small{\text{
$
\binom50+\binom51+\binom62+\binom71+\binom83+\binom92+\binom{10}4+\binom{11}3= 1+5+15+7+56+36+210+165 = 495
$}}$$

.
30.04.2015