heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+8

(1) x+(b/a-1)y-b/(a+b)=0

(2) bx/a-(b/a+1)y+b^2/(a(a-b))+1=0

Können Sie mir den Lösungsweg dieses Gleichungssystems zeigen bitte!

$$\\
\small{\text{$
\begin{array}{rcl}(1) \quad x+( \frac{b}{a}-1)\cdot y- \frac{b}{(a+b)} &=& 0\\
x+( \frac{b-a}{a} ) \cdot y- \frac{b}{(a+b)} &=& 0\\
x&=& \frac{b}{a+b}- \left( \frac{b-a}{a} \right) \cdot y
\end{array}
$}}$$

$$\\\small{\text{$
\begin{array}{rcl}(2) \quad \frac{b\cdot x}{a}-( \frac{b}{a}+1)\cdot y+ \frac{b^2}{(a\cdot (a-b))}+1 &=& 0 \\
\frac{b}{a}\cdot x -( \frac{a+b}{a})\cdot y+ \frac{b^2}{(a\cdot (a-b))}+1 &=& 0 \\
y\cdot( \frac{a+b}{a}) &=& \frac{b}{a}\cdot x + \frac{b^2}{(a\cdot (a-b))}+1 \\ \\
y\cdot (a+b) &=& b\cdot x + \frac{b^2}{(a-b)}+a\\
\end{array}
$}}$$

(1) in (2) einsetzen:

$$\\\small{\text{$
\begin{array}{rcl}
y\cdot (a+b) &=& b\cdot \left[\frac{b}{a+b}- \left( \frac{b-a}{a} \right) \cdot y
\right] + \frac{b^2}{(a-b)}+a\\\\
y\cdot (a+b) &=& \frac{b^2}{a+b}- b\cdot \left( \frac{b-a}{a} \right) \cdot y + \frac{b^2}{(a-b)}+a\\\\
y\cdot (a+b)+ b\cdot \left( \frac{b-a}{a} \right) \cdot y &=& \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a\\\\
y\cdot \left[
(a+b)+ b\cdot \left( \frac{b-a}{a} \right)
\right] &=& \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a\\\\
y\cdot \left( a+b+ \frac{b^2}{a} -b\right)
&=& \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a\\\\
y\cdot \left( a+ \not{b}+ \frac{b^2}{a} -\not{b}\right)
&=& \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a\\\\
y\cdot \left( \frac{a^2+b^2}{a} \right)
&=& \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a\\\\
y &=& \left( \frac{a}{a^2+b^2} \right) \cdot
\left( \frac{b^2}{a+b}+ \frac{b^2}{(a-b)}+a \right) \\\\
y &=& \left( \frac{a\cdot b^2}{a^2+b^2} \right) \cdot
\left( \frac{1}{a+b}+ \frac{1}{(a-b)}+\frac{a}{b^2} \right) \\\\
y &=& \left( \frac{a\cdot b^2}{a^2+b^2} \right) \cdot
\left( \frac{(a-b)\cdot b^2+(a+b)\cdot b^2 + a\cdot(a^2-b^2) }{b^2\cdot (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{a\cdot \not{b^2} }{a^2+b^2} \right) \cdot
\left( \frac{(a-b)\cdot b^2+(a+b)\cdot b^2 + a\cdot(a^2-b^2) }{ \not{b^2} \cdot (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a }{a^2+b^2} \right) \cdot
\left( \frac{(a-b)\cdot b^2+(a+b)\cdot b^2 + a\cdot(a^2-b^2) }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a }{a^2+b^2} \right) \cdot
\left( \frac{ a\cdot b^2-b^3 + a\cdot b^2 + b^3 + a^3 - a\cdot b^2 }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a }{a^2+b^2} \right) \cdot
\left( \frac{ a\cdot b^2 + a^3 }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a^2 }{\left( a^2+b^2 \right) } \right) \cdot
\left( \frac{ \left( b^2 + a^2 \right) }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a^2 }{\left( a^2+b^2 \right) } \right) \cdot
\left( \frac{ \left( a^2 + b^2 \right) }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \left( \frac{ a^2 }{ (a+b)\cdot (a-b) } \right) \\\\
y &=& \dfrac{ a^2 }{ a^2-b^2 } \\\\
\end{array}
$}}$$

$$\\ \small{\text{$
\begin{array}{rcl}
x&=& \frac{b}{a+b}- \left( \frac{b-a}{a} \right) \cdot y \\\\
x&=& \frac{b}{a+b}- \left( \frac{b-a}{a} \right) \cdot
( \frac{ a^2 }{ a^2-b^2 } ) \\\\
x&=& \frac{b}{a+b}- \left( \frac{b-a}{1} \right) \cdot
( \frac{ a }{ a^2-b^2 } ) \\\\
x&=& \frac{b}{a+b}+\left( \frac{a-b}{1} \right) \cdot
( \frac{ a }{ a^2-b^2 } ) \\\\
x&=& \frac{b}{a+b}+ \frac{ (a-b)\cdot a }{ (a+b)\cdot(a-b) } \\\\
x&=& \frac{b}{a+b}+ \frac{ a }{ a+b } \\\\
x&=& \frac{b+a}{a+b} \\\\
x&=& \frac{a+b}{a+b} \\\\
x&=& 1
\end{array}
$}}$$

 

$$\boxed{\quad x = 1 \qquad y = \dfrac{ a^2 }{ a^2-b^2 } \quad }$$

.
22.04.2015
 #2
avatar+26387 
+5

 factors of 2^145-3

see: http://web2.0calc.com/#factor(2^145-3) and push the "=" Button

 $$\small{\text{
$
2^{145} - 3 = (29*51690246276649)*29753822786092084791696150649
$
}}$$

.
22.04.2015
 #2
avatar+26387 
+5

What is a pythagorean triple 

https://commons.wikimedia.org/wiki/File:Pythagorean.svg#/media/File:Pythagorean.svg

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.

Generating a triple:

A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive integers m and n with m > n. The formula states that the integers

$$a = m^2 - n^2 ,\ \, b = 2mn ,\ \, c = m^2 + n^2$$ 

or

$$a = k\cdot(m^2 - n^2) ,\ \, b = k\cdot(2mn) ,\ \, c = k\cdot(m^2 + n^2)$$

form a Pythagorean triple.

Example:

$$\\ \text{If } m=2 \text{ and } n = 1:\\
a= 2^2-1^2 =4 - 1 = 3 \\
b = 2\cdot 2 \cdot 1 = 4 \\
c = 2^2 + 1^2 = 4+1=5$$

Pythagorean triple (3, 4, 5), because $$\small{\text{$3^2+4^2=5^2$}}$$

.
22.04.2015