Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+8

(1) x+(b/a-1)y-b/(a+b)=0

(2) bx/a-(b/a+1)y+b^2/(a(a-b))+1=0

Können Sie mir den Lösungsweg dieses Gleichungssystems zeigen bitte!

(1)x+(ba1)yb(a+b)=0x+(baa)yb(a+b)=0x=ba+b(baa)y

(2)bxa(ba+1)y+b2(a(ab))+1=0bax(a+ba)y+b2(a(ab))+1=0y(a+ba)=bax+b2(a(ab))+1y(a+b)=bx+b2(ab)+a

(1) in (2) einsetzen:

y(a+b)=b[ba+b(baa)y]+b2(ab)+ay(a+b)=b2a+bb(baa)y+b2(ab)+ay(a+b)+b(baa)y=b2a+b+b2(ab)+ay[(a+b)+b(baa)]=b2a+b+b2(ab)+ay(a+b+b2ab)=b2a+b+b2(ab)+ay(a+b+b2ab)=b2a+b+b2(ab)+ay(a2+b2a)=b2a+b+b2(ab)+ay=(aa2+b2)(b2a+b+b2(ab)+a)y=(ab2a2+b2)(1a+b+1(ab)+ab2)y=(ab2a2+b2)((ab)b2+(a+b)b2+a(a2b2)b2(a+b)(ab))y=(ab2a2+b2)((ab)b2+(a+b)b2+a(a2b2)b2(a+b)(ab))y=(aa2+b2)((ab)b2+(a+b)b2+a(a2b2)(a+b)(ab))y=(aa2+b2)(ab2b3+ab2+b3+a3ab2(a+b)(ab))y=(aa2+b2)(ab2+a3(a+b)(ab))y=(a2(a2+b2))((b2+a2)(a+b)(ab))y=(a2(a2+b2))((a2+b2)(a+b)(ab))y=(a2(a+b)(ab))y=a2a2b2

x=ba+b(baa)yx=ba+b(baa)(a2a2b2)x=ba+b(ba1)(aa2b2)x=ba+b+(ab1)(aa2b2)x=ba+b+(ab)a(a+b)(ab)x=ba+b+aa+bx=b+aa+bx=a+ba+bx=1

 

x=1y=a2a2b2

.
22.04.2015
 #2
avatar+26396 
+5

 factors of 2^145-3

see: http://web2.0calc.com/#factor(2^145-3) and push the "=" Button

  21453=(2951690246276649)29753822786092084791696150649 

.
22.04.2015
 #2
avatar+26396 
+5

What is a pythagorean triple 

https://commons.wikimedia.org/wiki/File:Pythagorean.svg#/media/File:Pythagorean.svg

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.

Generating a triple:

A fundamental formula for generating Pythagorean triples given an arbitrary pair of positive integers m and n with m > n. The formula states that the integers

a=m2n2, b=2mn, c=m2+n2 

or

a=k(m2n2), b=k(2mn), c=k(m2+n2)

form a Pythagorean triple.

Example:

If m=2 and n=1:a=2212=41=3b=221=4c=22+12=4+1=5

Pythagorean triple (3, 4, 5), because 32+42=52

.
22.04.2015
 #3
avatar+26396 
+5

Quater =25Dime =10 Nickel =5In $0.55 max. 2 Quaters, max. 5 Dimes and max. 11 Nickels (2i=0x(25i))×(5i=0x(10i))×(11i=0x(5i))=(1+x25+x50)×(1+x10+x20+x30+x40+x50)×(1+x5+x10+x15+x20+x25+x30+x35+x40+x45+x50+x55)=(x155)+(x150)+2x145+2x140+3x135+4x130+5x125+6x120+7x115+8x110+10x105+11x100+11x95+12x90+12x85+13x80+13x75+12x70+12x65+11x60+11x55+10x50+8x45+7x40+6x35+5x30+4x25+3x20+2x15+2x10+(x5)+1

 

The coefficient from  x55 is 11. So there are 11 possibilities.

21.04.2015