heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+5

Find an angle x where sin x = cos x

 

$$\cos(x)-\sin(x)=0 \\\\
a\cdot \cos(x) + b\cdot \sin(x) = c \qquad | \qquad a=1 \qquad b=-1 \qquad c= 0\\
a\cdot \cos(x) + b\cdot \sin(x) = c \quad | \quad : a \\
\cos(x) + \frac{b}{a} \cdot \sin(x) = \frac{c}{a} \quad | \quad c = 0 \\\\
\cos(x) + \frac{b}{a} \cdot \sin(x) = 0 \\
\small{\text{
$
\text{We set } \tan{(\varepsilon)} = \frac{b}{a} \quad \text{ we have } a = 1 \text{ and } b = -1 \text{ so } \varepsilon = \arctan{(-1)} = -\frac{\pi}{4}
$
}}\\\\
\cos(x) + \frac{b}{a} \cdot \sin(x) = 0 \quad | \quad \tan{(\varepsilon)} = \frac{b}{a}\\\\
\cos(x) + \tan{(\varepsilon)}\cdot \sin(x) = 0 \\
\cos(x) + \frac{ \sin{(\varepsilon)} } { \cos{(\varepsilon)} } \cdot \sin(x) = 0 \quad | \quad \cdot \cos{(\varepsilon)} \\
\small{\text{
$
\cos{ (\varepsilon)} \cdot \cos(x) + \sin{(\varepsilon)} \cdot \sin(x) = 0 \quad | \quad \cos{ (x-\varepsilon )} = \cos{ (\varepsilon)} \cdot \cos(x) + \sin{(\varepsilon)} \cdot \sin(x)
$}}\\
\cos{ (x-\varepsilon )} =0 \quad | \quad \pm \arccos{}\\
x-\varepsilon = \pm \arccos{(0)} = \pm \frac{\pi}{2}\\
x-\varepsilon = \pm \frac{\pi}{2} \\
x= \varepsilon \pm \frac{\pi}{2} \quad | \quad \varepsilon = -\frac{\pi}{4}\\
x= -\frac{\pi}{4} \pm \frac{\pi}{2} \\\\
x_1= -\frac{\pi}{4} +\frac{\pi}{2} = \frac{\pi}{4} \\
x_1= 45\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}}$$

$$\\x_2= -\frac{\pi}{4} -\frac{\pi}{2}
= -\frac{3}{4} \cdot \pi
= -\frac{3}{4} \cdot \pi + 2\pi
= \frac{5}{4} \cdot\pi \\
x_2 = 225\ensurement{^{\circ}} \pm k\cdot 360\ensurement{^{\circ}}$$

$$k=0,1,2\cdots$$

.
18.03.2015
 #1
avatar+26387 
+5

What Question

What to the power of 10 equals 149597870700?

$$\small{\text{$
10^{ \log{(149\ 597\ 870\ 700)} } = 10^{11.1749254120}=149\ 597\ 870\ 700.
$
}}$$

The astronomical unit (AU), which Nature News calls “the rough distance from the Earth to the Sun” and Wikipedia refers to as “the average distance between the Earth and the Sun (roughly speaking)”, has been defined as fixed at 149,597,870,700 metres. This standard was adopted by unanimous vote at the International Astronomical Union’s meeting in Beijing in August 2012.

16.03.2015