Processing math: 100%
 
+0  
 
0
1153
2
avatar

Given that z=-√2-√2i, calculate z^8.

 Mar 18, 2015

Best Answer 

 #1
avatar+26396 
+10

Given that z=-√2-√2i, calculate z^8

 z=22iz=2(1+i) z8=[2(1+i)]8 z8=(2)8(1+i)8  z8=(1)8282(1+i)8  z8=124(1+i)8  z8=24(1+i)8(1+i)2=1+2i+i2 i2=1 (1+i)2=1+2i1(1+i)2=2iz8=24[(1+i)2]4z8=24[2i]4z8=2424i4z8=28i4i4=i2i2i4=(1)(1)i4=(1)2i4=1 z8=28=256  

 Mar 18, 2015
 #1
avatar+26396 
+10
Best Answer

Given that z=-√2-√2i, calculate z^8

 z=22iz=2(1+i) z8=[2(1+i)]8 z8=(2)8(1+i)8  z8=(1)8282(1+i)8  z8=124(1+i)8  z8=24(1+i)8(1+i)2=1+2i+i2 i2=1 (1+i)2=1+2i1(1+i)2=2iz8=24[(1+i)2]4z8=24[2i]4z8=2424i4z8=28i4i4=i2i2i4=(1)(1)i4=(1)2i4=1 z8=28=256  

heureka Mar 18, 2015
 #2
avatar
+5

A general rule when working with complex numbers is , for addition and subtraction use the algebraic form of the number, for multiplication powers and roots use the polar or exponential form.

So, first putting the number into polar form,

2ı2=2(1/2+ı/2)=245deg

and now raising to the power eight using De Moivre's theorem,

(245deg)8=(2)8(8×45deg)=256360deg=256.

 Mar 18, 2015

2 Online Users

avatar