Given that z=-√2-√2i, calculate z^8
z=−√2−√2⋅iz=−√2⋅(1+i) z8=[−√2⋅(1+i)]8 z8=(−√2)8⋅(1+i)8 z8=(−1)8⋅282⋅(1+i)8 z8=1⋅24⋅(1+i)8 z8=24⋅(1+i)8(1+i)2=1+2⋅i+i2 i2=−1 (1+i)2=1+2⋅i−1(1+i)2=2⋅iz8=24⋅[(1+i)2]4z8=24⋅[2⋅i]4z8=24⋅24⋅i4z8=28⋅i4i4=i2⋅i2i4=(−1)⋅(−1)i4=(−1)2i4=1 z8=28=256
A general rule when working with complex numbers is , for addition and subtraction use the algebraic form of the number, for multiplication powers and roots use the polar or exponential form.
So, first putting the number into polar form,
−√2−ı√2=−2(1/√2+ı/√2)=−2∠45deg
and now raising to the power eight using De Moivre's theorem,
(−2∠45deg)8=(−2)8∠(8×45deg)=256∠360deg=256.