+0  
 
0
1
5358
4
avatar

Find an angle x where sin x = cos x

 Mar 18, 2015

Best Answer 

 #4
avatar+118703 
+5

WOW heureka, you gave yourself something to chew on there!    

My answer is no where near as impressive.   

 

sinx=cosx          When cosx=0,    sinx ≠0     so    cosx ≠ 0  therefore I can divide by it.

 

sinxcosx=1tanx=1$tanisposinthe1stan3rdquad$x=π4,5π4etcx=nπ+π4nZ$(nisaninteger)

 Mar 18, 2015
 #1
avatar
+5

sinx = cos x @45 degrees

 Mar 18, 2015
 #2
avatar+130466 
+5

This will occur at 45° ± n180°  where n is an integer

 

  

 Mar 18, 2015
 #3
avatar+26396 
+5

Find an angle x where sin x = cos x

 

cos(x)sin(x)=0acos(x)+bsin(x)=c|a=1b=1c=0acos(x)+bsin(x)=c|:acos(x)+basin(x)=ca|c=0cos(x)+basin(x)=0 We set tan(ε)=ba we have a=1 and b=1 so ε=arctan(1)=π4 cos(x)+basin(x)=0|tan(ε)=bacos(x)+tan(ε)sin(x)=0cos(x)+sin(ε)cos(ε)sin(x)=0|cos(ε) cos(ε)cos(x)+sin(ε)sin(x)=0|cos(xε)=cos(ε)cos(x)+sin(ε)sin(x)cos(xε)=0|±arccosxε=±arccos(0)=±π2xε=±π2x=ε±π2|ε=π4x=π4±π2x1=π4+π2=π4x1=45\ensurement±k360\ensurement

x2=π4π2=34π=34π+2π=54πx2=225\ensurement±k360\ensurement

k=0,1,2

 Mar 18, 2015
 #4
avatar+118703 
+5
Best Answer

WOW heureka, you gave yourself something to chew on there!    

My answer is no where near as impressive.   

 

sinx=cosx          When cosx=0,    sinx ≠0     so    cosx ≠ 0  therefore I can divide by it.

 

sinxcosx=1tanx=1$tanisposinthe1stan3rdquad$x=π4,5π4etcx=nπ+π4nZ$(nisaninteger)

Melody Mar 18, 2015

1 Online Users