Find an angle x where sin x = cos x
cos(x)−sin(x)=0a⋅cos(x)+b⋅sin(x)=c|a=1b=−1c=0a⋅cos(x)+b⋅sin(x)=c|:acos(x)+ba⋅sin(x)=ca|c=0cos(x)+ba⋅sin(x)=0 We set tan(ε)=ba we have a=1 and b=−1 so ε=arctan(−1)=−π4 cos(x)+ba⋅sin(x)=0|tan(ε)=bacos(x)+tan(ε)⋅sin(x)=0cos(x)+sin(ε)cos(ε)⋅sin(x)=0|⋅cos(ε) cos(ε)⋅cos(x)+sin(ε)⋅sin(x)=0|cos(x−ε)=cos(ε)⋅cos(x)+sin(ε)⋅sin(x)cos(x−ε)=0|±arccosx−ε=±arccos(0)=±π2x−ε=±π2x=ε±π2|ε=−π4x=−π4±π2x1=−π4+π2=π4x1=45\ensurement∘±k⋅360\ensurement∘
x2=−π4−π2=−34⋅π=−34⋅π+2π=54⋅πx2=225\ensurement∘±k⋅360\ensurement∘
k=0,1,2⋯