Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+1

If we write 2+3+1(22+33)
in the form (a2+b3)c such that a, b, and c

are positive integers and c is as small as possible,
then what is a + b + c?

 

2+3+1(22+33)=2+3+1(22+33)(2233)(2233)=2+3+(2233)(22+33)(2233)=2+3+(2233)(4293)=2+3+(2233)19=2+3+(2233)19=19(2+3)(2233)19=192+19322+3319=172+22319

 

a+b+c=17+22+19a+b+c=58

 

laugh

24.07.2021
 #1
avatar+26396 
+1

Given that x satisfies x25x+1=0,
find the value of x4+1x4.

 

x25x+1=0x1,2=5±2542x1,2=5±212x21,2=(5±212)2x21,2=123±5212x41,2=(123±5212)2x41,2=527±115212

 

x1:

x41+1x41=527+115212+2527+11521x41+1x41=527+115212+2(527+11521)(52711521)(52711521)x41+1x41=527+115212+2(52711521)4x41+1x41=527+115212+(52711521)2x41+1x41=527+11521+527115212x41+1x41=25272x41+1x41=527

 

x2:

x42+1x42=527115212+252711521x42+1x42=527115212+2(52711521)(527+11521)(527+11521)x42+1x42=527115212+2(527+11521)4x42+1x42=527115212+(527+11521)2x42+1x42=52711521+527+115212x42+1x42=25272x42+1x42=527

 

x4+1x4=527

 

laugh

24.07.2021
 #2
avatar+26396 
+1

As shown in the diagram, BD/DC=2, CE/EA=3,  and AF/FB=4.
Find [DEF]/[ABC].

 

 Let BC=a Let BD=23a Let DC=13a Let CA=b Let CE=34b Let EA=14b Let AB=c Let AF=45c Let FB=15c

 

 Let CAB=A Let ABC=B Let BCA=C

 

2[ABC]=bcsin(A)2[AFE]=14b45csin(A)2[AFE]=15bcsin(A)25[AFE]=bcsin(A)bcsin(A)=2[ABC]=25[AFE]2[ABC]=25[AFE][ABC]=5[AFE][AFE]=15[ABC]2[ABC]=casin(B)2[FBD]=15c23asin(B)2[FBD]=215casin(B)2152[FBD]=casin(B)casin(B)=2[ABC]=2152[FBD]2[ABC]=2152[FBD][ABC]=152[FBD][FBD]=215[ABC]2[ABC]=absin(C)2[EDC]=13a34bsin(C)2[EDC]=14absin(C)24[EDC]=absin(C)absin(C)=2[ABC]=24[EDC]2[ABC]=24[EDC][ABC]=4[EDC][EDC]=14[ABC]

 

[DEF]+[AFE]+[FBD]+[EDC]=[ABC][DEF]+15[ABC]+215[ABC]+14[ABC]=[ABC][DEF]+[ABC](15+215+14)=[ABC][DEF]+712[ABC]=[ABC][DEF]=[ABC]712[ABC][DEF]=[ABC](1712)[DEF]=512[ABC][DEF][ABC]=512

 

laugh

23.07.2021
 #2
avatar+26396 
+2

(b)

For some positive integer n the expansion of (1+x)n
has three consecutive coefficients a, b, c that satisfy
a:b:c=1:7:35.
What must n be?

 

Let a=(nk1) Let b=(nk) Let c=(nk+1) 

 

ba=71=(nk)(nk1)71=(nk)(nk1)71=nk+1k7k=nk+18k=n+1n=8k1

 

(nk+1)=n!(k+1)!(n(k+1))!=n!(k+1)!(nk1))!(k+1)!=k!(k+1)=n!k!(k+1)(nk1)!(nk1)!(nk)=(nk)!(nk1)!=(nk)!nk=n!(nk)k!(k+1)(nk)!=n!k!(nk)!(nk)(k+1)(nk)=n!k!(nk)!=(nk)(nk)(k+1)

 

cb=357=(nk+1)(nk)357=(nk)(nk)(k+1)(nk)357=(nk)(k+1)35(k+1)=7(nk)42k=7n35k=7n3542

 

n=8k1|k=7n3542n=8(7n3542)1n=4(7n35)211n=4(7n35)212121n=4(7n35)2121n=28n140217n=161|:7n=23k=7n3542k=7233542k=3

 

a:b:c=(nk1):(nk):(nk+1)=1:7:35(nk1):(nk):(nk+1)=1:7:35(2331):(233):(233+1)=1:7:35(232):(233):(234)=1:7:35253:1771:8855=1:7:35

 

laugh

21.07.2021