(b)
For some positive integer n the expansion of (1+x)n
has three consecutive coefficients a, b, c that satisfy
a:b:c=1:7:35.
What must n be?
Let a=(nk−1) Let b=(nk) Let c=(nk+1)
ba=71=(nk)(nk−1)71=(nk)(nk−1)71=n−k+1k7k=n−k+18k=n+1n=8k−1
(nk+1)=n!(k+1)!(n−(k+1))!=n!(k+1)!(n−k−1))!(k+1)!=k!(k+1)=n!k!(k+1)(n−k−1)!(n−k−1)!(n−k)=(n−k)!(n−k−1)!=(n−k)!n−k=n!∗(n−k)k!(k+1)(n−k)!=n!k!(n−k)!∗(n−k)(k+1)(nk)=n!k!(n−k)!=(nk)∗(n−k)(k+1)
cb=357=(nk+1)(nk)357=(nk)∗(n−k)(k+1)(nk)357=(n−k)(k+1)35(k+1)=7(n−k)42k=7n−35k=7n−3542
n=8k−1|k=7n−3542n=8(7n−3542)−1n=4(7n−35)21−1n=4(7n−35)−212121n=4(7n−35)−2121n=28n−140−217n=161|:7n=23k=7n−3542k=7∗23−3542k=3
a:b:c=(nk−1):(nk):(nk+1)=1:7:35(nk−1):(nk):(nk+1)=1:7:35(233−1):(233):(233+1)=1:7:35(232):(233):(234)=1:7:35253:1771:8855=1:7:35
