(a) Simplify (nk)(nk−1).
(b) For some positive integer n the expansion of (1+x)n has three consecutive coefficients a,b,c that satisfy a:b:c=1:7:35. What must n be?
Please help! Sorry to have a repost but on the other question the answer links did not work. Thanks!
(a) Simplify
(nk)(nk−1).
(nk−1)=n!(k−1)!(n−(k−1))!=n!(k−1)!(n−k+1))!(k−1)!k=k!(k−1)!=k!k=n!∗kk!(n−k+1))!(n−k+1))!=(n−k)!(n−k+1)=n!∗kk!(n−k)!(n−k+1)=n!k!(n−k)!∗kn−k+1(nk)=n!k!(n−k)!=(nk)∗kn−k+1(nk)(nk−1)=(nk)(nk)∗kn−k+1(nk)(nk−1)=1kn−k+1(nk)(nk−1)=n−k+1k
(b)
For some positive integer n the expansion of (1+x)n
has three consecutive coefficients a, b, c that satisfy
a:b:c=1:7:35.
What must n be?
Let a=(nk−1) Let b=(nk) Let c=(nk+1)
ba=71=(nk)(nk−1)71=(nk)(nk−1)71=n−k+1k7k=n−k+18k=n+1n=8k−1
(nk+1)=n!(k+1)!(n−(k+1))!=n!(k+1)!(n−k−1))!(k+1)!=k!(k+1)=n!k!(k+1)(n−k−1)!(n−k−1)!(n−k)=(n−k)!(n−k−1)!=(n−k)!n−k=n!∗(n−k)k!(k+1)(n−k)!=n!k!(n−k)!∗(n−k)(k+1)(nk)=n!k!(n−k)!=(nk)∗(n−k)(k+1)
cb=357=(nk+1)(nk)357=(nk)∗(n−k)(k+1)(nk)357=(n−k)(k+1)35(k+1)=7(n−k)42k=7n−35k=7n−3542
n=8k−1|k=7n−3542n=8(7n−3542)−1n=4(7n−35)21−1n=4(7n−35)−212121n=4(7n−35)−2121n=28n−140−217n=161|:7n=23k=7n−3542k=7∗23−3542k=3
a:b:c=(nk−1):(nk):(nk+1)=1:7:35(nk−1):(nk):(nk+1)=1:7:35(233−1):(233):(233+1)=1:7:35(232):(233):(234)=1:7:35253:1771:8855=1:7:35