Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1046
3
avatar

(a) Simplify (nk)(nk1). 

(b) For some positive integer n the expansion of (1+x)n has three consecutive coefficients a,b,c that satisfy a:b:c=1:7:35. What must n be?

 

Please help! Sorry to have a repost but on the other question the answer links did not work. Thanks!
 

 Jul 20, 2021
 #1
avatar+26396 
+4

(a) Simplify

(nk)(nk1).

 

(nk1)=n!(k1)!(n(k1))!=n!(k1)!(nk+1))!(k1)!k=k!(k1)!=k!k=n!kk!(nk+1))!(nk+1))!=(nk)!(nk+1)=n!kk!(nk)!(nk+1)=n!k!(nk)!knk+1(nk)=n!k!(nk)!=(nk)knk+1(nk)(nk1)=(nk)(nk)knk+1(nk)(nk1)=1knk+1(nk)(nk1)=nk+1k

 

laugh

 Jul 21, 2021
 #3
avatar
0

Thank you so much for answering my question but could you please elaborate on how you got (nk+1)!=(nk)!(nk+1)

Guest Jul 28, 2021
 #2
avatar+26396 
+2

(b)

For some positive integer n the expansion of (1+x)n
has three consecutive coefficients a, b, c that satisfy
a:b:c=1:7:35.
What must n be?

 

Let a=(nk1) Let b=(nk) Let c=(nk+1) 

 

ba=71=(nk)(nk1)71=(nk)(nk1)71=nk+1k7k=nk+18k=n+1n=8k1

 

(nk+1)=n!(k+1)!(n(k+1))!=n!(k+1)!(nk1))!(k+1)!=k!(k+1)=n!k!(k+1)(nk1)!(nk1)!(nk)=(nk)!(nk1)!=(nk)!nk=n!(nk)k!(k+1)(nk)!=n!k!(nk)!(nk)(k+1)(nk)=n!k!(nk)!=(nk)(nk)(k+1)

 

cb=357=(nk+1)(nk)357=(nk)(nk)(k+1)(nk)357=(nk)(k+1)35(k+1)=7(nk)42k=7n35k=7n3542

 

n=8k1|k=7n3542n=8(7n3542)1n=4(7n35)211n=4(7n35)212121n=4(7n35)2121n=28n140217n=161|:7n=23k=7n3542k=7233542k=3

 

a:b:c=(nk1):(nk):(nk+1)=1:7:35(nk1):(nk):(nk+1)=1:7:35(2331):(233):(233+1)=1:7:35(232):(233):(234)=1:7:35253:1771:8855=1:7:35

 

laugh

 Jul 21, 2021

2 Online Users

avatar
avatar