Given that x satisfies x2−5x+1=0,
find the value of x4+1x4.
x2−5x+1=0x1,2=5±√25−42x1,2=5±√212x21,2=(5±√212)2x21,2=123±5√212x41,2=(123±5√212)2x41,2=527±115√212
x1:
x41+1x41=527+115√212+2527+115√21x41+1x41=527+115√212+2(527+115√21)∗(527−115√21)(527−115√21)x41+1x41=527+115√212+2(527−115√21)4x41+1x41=527+115√212+(527−115√21)2x41+1x41=527+115√21+527−115√212x41+1x41=2∗5272x41+1x41=527
x2:
x42+1x42=527−115√212+2527−115√21x42+1x42=527−115√212+2(527−115√21)∗(527+115√21)(527+115√21)x42+1x42=527−115√212+2(527+115√21)4x42+1x42=527−115√212+(527+115√21)2x42+1x42=527−115√21+527+115√212x42+1x42=2∗5272x42+1x42=527
x4+1x4=527