Processing math: 100%
 
+0  
 
0
492
3
avatar

Suppose we have PQ=6QR=7, and PR=9, as in the picture below:

Find the length of the median from R to ¯PQ.

 Jul 18, 2021
 #1
avatar+80 
0

I won't directly solve this problem, but hint: try using sin on triangle RPM. You don't need theta, just pull up a chart of all sin values and compare the results. After that, use theta to calculate side d.

 Jul 18, 2021
edited by PBJcatalinasandwich  Jul 18, 2021
 #2
avatar+1641 
+2

PR = a = 9          QR = b = 7           PQ = c = 6          RM = d = ?

 

d = 1/2[sqrt(2*a2 + 2*b2 - c2)]

 

d = √224 / 2 ≈ 7.483

 

 Jul 19, 2021
 #3
avatar+26396 
+1

Suppose we have PQ=6, QR=7, and PR=9, as in the picture below:


Find the length of the median from R to ¯PQ.

 

cos Rule:

92=(23)2+722237cos(Q)92=62+722237cos(Q)2237cos(Q)=62+72922237cos(Q)=4|:2237cos(Q)=2(1)

 

cos Rule:

d2=32+72237cos(Q)237cos(Q)=32+72d2237cos(Q)=58d2(2)(1)=(2):2=58d2d2=582d2=56d2=414d=214

 

laugh

 Jul 19, 2021
edited by heureka  Jul 19, 2021
edited by heureka  Jul 19, 2021

1 Online Users

avatar