Assuming x, y, and z are positive real numbers satisfying
xy−z=15xz−y=15yz−x=15
then, what is the value of xyz?
(1)xy−z=15(2)xz−y=15(3)yz−x=15(1)+(2)+(3):(xy−z)+(xz−y)+(yz−x)=45…x+y+z=xy+xz+yz−45
yz−x=15x=yz−15xz−y=15(yz−15)z−y=15yz2−15z−y=15yz2−y=15z+15y(z2−1)=15(z+1)y(z−1)(z+1)=15(z+1)|:(z+1), z>0!y(z−1)=15y=15z−1(4)
xz−y=15y=xz−15xy−z=15(xz−15)x−z=15zx2−15x−z=15zx2−z=15x+15z(x2−1)=15(x+1)z(x−1)(x+1)=15(x+1)|:(x+1), x>0!z(x−1)=15z=15x−1(5)
xy−z=15z=xy−15yz−x=15(xy−15)y−x=15xy2−15y−x=15xy2−x=15y+15x(y2−1)=15(y+1)x(y−1)(y+1)=15(y+1)|:(y+1), y>0!x(y−1)=15x=15y−1(6)
(4)×(5)×(6):xyz=15y−1×15z−1×15x−1xyz=153(x−1)(y−1)(z−1)(x−1)(y−1)(z−1)=xyz−(xy+xz+yz)+(x+y+z)−1xyz=153xyz−(xy+xz+yz)+(x+y+z)−1x+y+z=xy+xz+yz−45xyz=153xyz−(xy+xz+yz)+(xy+xz+yz−45)−1xyz=153xyz−46xyz(xyz−46)=153(xyz)2−46xyz−153=0xyz=46±√462−4∗(−153)2xyz=46±√462+4∗1532xyz=46±√156162xyz=46±√162∗612xyz=46±16√612xyz=23+8√61xyz>0!
