Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+2

Find the least positive four-digit solution to the following system of congruences.
7x21(mod14)2x+1816(mod9)

 

7x21(mod14)7x2114(mod14)7x7(mod14)7x=7+14mmZ7x=7+14m|:7x=1+2m|x is an odd number!x1(mod2)

 

...so 7x21(mod14) or x1(mod2)

 

2x+1816(mod9)2x1618(mod9)2x2(mod9)2x=2+9nnZ2x=2+9n|x=1+2m2(1+2m)=2+9n2+4m=2+9n4m=4+9nm=4+9n4m=4+8n+n4m=1+2n+n4=rrZm=1+2n+rr=n44r=nn=4rm=1+2(4r)+rm=1+9rx=1+2m|m=1+9rx=1+2(1+9r)x=12+18rx=1+18rrZ

 

Find the least positive four-digit solution:

1+18r>99918r>1000r>100018r>55.ˉ5r=56x=1+1856x=1007

 

The least positive four-digit solution is 1007

 

laugh

09.07.2021
 #1
avatar+26396 
+2

Assuming x, y, and z are positive real numbers satisfying
xyz=15xzy=15yzx=15
then, what is the value of xyz?

 

(1)xyz=15(2)xzy=15(3)yzx=15(1)+(2)+(3):(xyz)+(xzy)+(yzx)=45x+y+z=xy+xz+yz45

 

yzx=15x=yz15xzy=15(yz15)zy=15yz215zy=15yz2y=15z+15y(z21)=15(z+1)y(z1)(z+1)=15(z+1)|:(z+1), z>0!y(z1)=15y=15z1(4)

 

xzy=15y=xz15xyz=15(xz15)xz=15zx215xz=15zx2z=15x+15z(x21)=15(x+1)z(x1)(x+1)=15(x+1)|:(x+1), x>0!z(x1)=15z=15x1(5)

 

xyz=15z=xy15yzx=15(xy15)yx=15xy215yx=15xy2x=15y+15x(y21)=15(y+1)x(y1)(y+1)=15(y+1)|:(y+1), y>0!x(y1)=15x=15y1(6)

 

(4)×(5)×(6):xyz=15y1×15z1×15x1xyz=153(x1)(y1)(z1)(x1)(y1)(z1)=xyz(xy+xz+yz)+(x+y+z)1xyz=153xyz(xy+xz+yz)+(x+y+z)1x+y+z=xy+xz+yz45xyz=153xyz(xy+xz+yz)+(xy+xz+yz45)1xyz=153xyz46xyz(xyz46)=153(xyz)246xyz153=0xyz=46±4624(153)2xyz=46±462+41532xyz=46±156162xyz=46±162612xyz=46±16612xyz=23+861xyz>0!

 

laugh

06.07.2021