heureka

avatar
Benutzernameheureka
Punkte26393
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26393 
+2

Let \(P = 4^{1/4} \cdot 16^{1/16} \cdot 64^{1/64} \cdot 256^{1/256} \dotsm\)
Then \(P\) can be expressed in the form \(\sqrt[a]{b}\),
where \(a\) and \(b\) are positive integers.
Find the smallest possible value of \(a+b\)

 

\(\begin{array}{|rcll|} \hline P &=& 4^{1/4} \cdot 16^{1/16} \cdot 64^{1/64} \cdot 256^{1/256} \dotsm \\ P &=& 2^{\frac{1}{2^1}} \cdot 2^{\frac{2}{2^3}} \cdot 2^{\frac{3}{2^5}} \cdot 2^{\frac{4}{2^7}} \dotsm 2^{\left(\frac{n}{2^{2n-1}} \right)} \dotsm \\ P &=& 2^{\frac{1}{2^1}+\frac{2}{2^3}+\frac{3}{2^5}+\frac{4}{2^7}+\dotsm+\frac{n}{2^{2n-1}}+\dotsm } \\ P &=& 2^{S_{\infty}} \\ \hline S_n &=& \frac{1}{2^1}+\frac{2}{2^3}+\frac{3}{2^5}+\frac{4}{2^7}+\dotsm+\frac{n}{2^{2n-1}} \\ \frac{1}{2^2}S_n &=& \frac{1}{2^3}+\frac{2}{2^5}+\frac{3}{2^7}+\dotsm+\frac{n-1}{2^{2n-1}} +\frac{n}{2^{2n+1}}\\ \hline S_n-\frac{1}{2^2}S_n &=& \frac{1}{2^1}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\dotsm+\frac{1}{2^{2n-1}}-\frac{n}{2^{2n+1}} \\ \frac{3}{4}S_n &=& s-\frac{n}{2^{2n+1}}\qquad (1) \\ s&=& \frac{1}{2^1}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\dotsm+\frac{1}{2^{2n-1}} \\ \frac{1}{2^2}s &=& \frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\dotsm+\frac{1}{2^{2n-1}}+\frac{1}{2^{2n+1}} \\ \hline s-\frac{1}{2^2}s &=&\frac{1}{2^1} - \frac{1}{2^{2n+1}} \\ \frac{3}{4}s &=&\frac{1}{2^1} - \frac{1}{2^{2n+1}} \\\\ s &=& \frac{4}{3}* \left( \frac{1}{2^1} - \frac{1}{2^{2n+1}} \right) \\ \hline \frac{3}{4}S_n &=& s-\frac{n}{2^{2n+1}}\qquad (1) \\ \frac{3}{4}S_n &=& \frac{4}{3}* \left( \frac{1}{2^1} - \frac{1}{2^{2n+1}} \right)-\frac{n}{2^{2n+1}} \\ \frac{3}{4}S_{\infty} &=& \frac{4}{3}* \left( \frac{1}{2^1} - 0 \right)-0 \\ \frac{3}{4}S_{\infty} &=& \frac{2}{3} \\ S_{\infty} &=& \frac{4}{3}*\frac{2}{3} \\ S_{\infty} &=& \frac{8}{9} \\ \hline P &=& 2^{S_{\infty}} \\ P &=& 2^{\frac{8}{9}} \\ P &=& \sqrt[9]{2^8} \\ P &=& \sqrt[9]{256} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline a+b &=& 9+256 \\ \mathbf{a+b} &=& \mathbf{265} \\ \hline \end{array}\)

 

laugh

04.08.2021
 #1
avatar+26393 
+3

In the diagram below, EU = 8, UF = 7,GV = 5, VH = 15, and UV= 8.
Find XY.

 

\(\begin{array}{|rcll|} \hline EU*UF &=& XU*UY \quad | \quad UY=(UV+VY) \\ EU*UF &=& XU*(UV+VY) \\ 8*7 &=& XU*(8+VY) \\ 56 &=& XU*(8+VY) \qquad (1) \\ 56 &=& 8XU+XU*VY \\ XU*VY &=& 56-8XU \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline GV*VH &=& XV*VY \quad | \quad XV=(XU+UV) \\ GV*VH &=& VY*(XU+UV) \\ 5*15 &=& VY*(8+XU) \\ 75 &=& VY*(8+XU) \qquad (3) \\ 75 &=& 8VY+XU*VY \\ XU*VY &=& 75-8VY \qquad (4) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (2)=(4) : & 56-8XU &=& 75-8VY \\ & 8VY &=& 19+8XU \\\\ & VY &=& \dfrac{19+8XU}{8} \qquad (5) \\\\ \hline (2)=(4) : & 56-8XU &=& 75-8VY \\ & 8XU &=& -19+8VY \\\\ & XU &=& \dfrac{-19+8VY}{8} \qquad (6) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{put}~(6)~\text{into}~(1):& 56 &=& \dfrac{-19+8VY}{8}*(8+VY) \\\\ &8* 56 &=& (-19+8VY)*(8+VY) \\ &448 &=& (-19+8VY)*(8+VY) \\ & 448 &=& -152-19VY+64VY+8VY^2 \\ &8VY^2+45VY-600 &=& 0 \\ \hline &VY &=& \dfrac{-45+\sqrt{21225} }{16} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \text{put}~(5)~\text{into}~(3):& 75 &=& \dfrac{19+8XU}{8}*(8+XU) \\\\ & 8*75 &=& (19+8XU)*(8+XU) \\ & 600 &=& (19+8XU)*(8+XU) \\ & 600 &=& 152 +19XU+64XU+8XU^2 \\ & 8XU^2 + 83XU-448 &=& 0 \\ \hline &XU &=& \dfrac{-83+\sqrt{21225} }{16} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline XY &=& UV+XU+VY \\\\ XY &=& 8 + \dfrac{-83+\sqrt{21225} }{16} + \dfrac{-45+\sqrt{21225} }{16} \\\\ XY &=& 8 - \dfrac{83}{16} + \dfrac{\sqrt{21225} }{16} - \dfrac{45}{16} + \dfrac{\sqrt{21225} }{16} \\\\ XY &=& 8 - \dfrac{83+45}{16} + \dfrac{2*\sqrt{21225} }{16} \\\\ XY &=& 8 - 8+ \dfrac{2*\sqrt{21225} }{16} \\\\ XY &=& \dfrac{\sqrt{21225} }{8} \\\\ XY &=& \dfrac{5\sqrt{849} }{8} \\\\ XY &\approx& 18.211 \\ \hline \end{array}\)

 

 

laugh

02.08.2021