Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26396 
+2

Let P=41/4161/16641/642561/256
Then P can be expressed in the form ab,
where a and b are positive integers.
Find the smallest possible value of a+b

 

P=41/4161/16641/642561/256P=21212223232524272(n22n1)P=2121+223+325+427++n22n1+P=2SSn=121+223+325+427++n22n1122Sn=123+225+327++n122n1+n22n+1Sn122Sn=121+123+125+127++122n1n22n+134Sn=sn22n+1(1)s=121+123+125+127++122n1122s=123+125+127++122n1+122n+1s122s=121122n+134s=121122n+1s=43(121122n+1)34Sn=sn22n+1(1)34Sn=43(121122n+1)n22n+134S=43(1210)034S=23S=4323S=89P=2SP=289P=928P=9256

 

a+b=9+256a+b=265

 

laugh

04.08.2021
 #1
avatar+26396 
+3

In the diagram below, EU = 8, UF = 7,GV = 5, VH = 15, and UV= 8.
Find XY.

 

EUUF=XUUY|UY=(UV+VY)EUUF=XU(UV+VY)87=XU(8+VY)56=XU(8+VY)(1)56=8XU+XUVYXUVY=568XU(2)

 

GVVH=XVVY|XV=(XU+UV)GVVH=VY(XU+UV)515=VY(8+XU)75=VY(8+XU)(3)75=8VY+XUVYXUVY=758VY(4)

 

(2)=(4):568XU=758VY8VY=19+8XUVY=19+8XU8(5)(2)=(4):568XU=758VY8XU=19+8VYXU=19+8VY8(6)

 

put (6) into (1):56=19+8VY8(8+VY)856=(19+8VY)(8+VY)448=(19+8VY)(8+VY)448=15219VY+64VY+8VY28VY2+45VY600=0VY=45+2122516

 

put (5) into (3):75=19+8XU8(8+XU)875=(19+8XU)(8+XU)600=(19+8XU)(8+XU)600=152+19XU+64XU+8XU28XU2+83XU448=0XU=83+2122516

 

XY=UV+XU+VYXY=8+83+2122516+45+2122516XY=88316+21225164516+2122516XY=883+4516+22122516XY=88+22122516XY=212258XY=58498XY18.211

 

 

laugh

02.08.2021