As shown in the diagram, BD/DC=2, CE/EA=3, and AF/FB=4.
Find [DEF]/[ABC].
Let BC=a Let BD=23a Let DC=13a Let CA=b Let CE=34b Let EA=14b Let AB=c Let AF=45c Let FB=15c
Let ∠CAB=A Let ∠ABC=B Let ∠BCA=C
2∗[ABC]=bcsin(A)2∗[AFE]=14b∗45csin(A)2∗[AFE]=15bcsin(A)2∗5∗[AFE]=bcsin(A)bcsin(A)=2∗[ABC]=2∗5∗[AFE]2∗[ABC]=2∗5∗[AFE][ABC]=5∗[AFE][AFE]=15[ABC]2∗[ABC]=casin(B)2∗[FBD]=15c∗23asin(B)2∗[FBD]=215casin(B)2∗152∗[FBD]=casin(B)casin(B)=2∗[ABC]=2∗152[FBD]2∗[ABC]=2∗152[FBD][ABC]=152[FBD][FBD]=215[ABC]2∗[ABC]=absin(C)2∗[EDC]=13a∗34bsin(C)2∗[EDC]=14absin(C)2∗4∗[EDC]=absin(C)absin(C)=2∗[ABC]=2∗4∗[EDC]2∗[ABC]=2∗4∗[EDC][ABC]=4∗[EDC][EDC]=14[ABC]
[DEF]+[AFE]+[FBD]+[EDC]=[ABC][DEF]+15[ABC]+215[ABC]+14[ABC]=[ABC][DEF]+[ABC](15+215+14)=[ABC][DEF]+712[ABC]=[ABC][DEF]=[ABC]−712[ABC][DEF]=[ABC](1−712)[DEF]=512[ABC][DEF][ABC]=512