Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26397 
+1

Show that (n1r1)+(n1r)=(nr)

 

(n1r1)=(n1)!(r1)!(n1(r1))!=(n1)!(r1)!(n1r+1)!=(n1)!(r1)!(nr)!(n1)!=n!n(r1)!=r!r(n1r1)=n!rnr!(nr)!

 

(n1r)=(n1)!r!(n1r)!=(n1)!r!(nr1)!(n1)!=n!n(nr1)!=(nr)!nr(n1r)=n!(nr)nr!(nr)!

 

(n1r1)+(n1r)=n!rnr!(nr)!+n!(nr)nr!(nr)!=n!r!(nr)!(r+(nr)n)=n!r!(nr)!(nn)=n!r!(nr)!(n1r1)+(n1r)=(nr)

 

laugh

13.05.2021