Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+2

The number 210 can be written as the sum of consecutive integers in several ways.
(a) When Written as the sum of the greatest possible number of consecutive positive integers, what is the largest of these integers?
(b) What if we allow negative integerrs into the sum; then what is the greatest possible number of consecutive integers that sum to 210?


Arithmetic progression:
an=a1+(n1)d|d=1an=a1+(n1)1an=a1+n1n=ana1+1


Sum of the Arithmetic progression:
sum=a1+an2n|sum=210210=a1+an2n(a1+an2)n=210(a1+an)n=420

 

The divisors of 420 are:
Divisors:
 1 |  2 |  3 |  4 |   5 |   6 |   7 | 10 |
12 | 14 | 15 | 20 |  21 |  28 |  30 | 35 |
42 | 60 | 70 | 84 | 105 | 140 | 210 | 420  (24 divisors)

 

Let a1+an=koran=ka1

 

(a1+an)n=420kn=1420=2210=3140=4105=584=670=760=1042=1235=1430=1528=2021=2120=2815=3014=3512=4210=607=706=845=1054=1403=2102=4201

 

n=ana1+1|an=ka1n=ka1a1+1n=k2a1+12a1=1+kna1=1+kn2an=ka1

 

knkna1anArithmeticprogression14201420209210209,208,,209,21022102210(103.5)a1 no integer 31403140687168,67,,70,7141054105505450,49,,53,54584584394439,38,,43,44670670(31.5)a1 no integer 760760263326,25,,32,3310421042(15.5)a1 no integer 12351235112311,10,,22,2314301430(7.5)a1 no integer 152815286216,5,,20,2120212021(0)20a1 no integer 212021201201,2,,19,20281528157217,8,,20,2130143014(8.5)a1 no integer 35123512122312,13,,22,2342104210(16.5)a1 no integer 607607273327,28,,32,33706706(32.5)a1 no integer 845845404440,41,42,43,4410541054515451,52,53,5414031403697169,70,7121022102(104.5)a1 no integer 42014201210210210

 

(a) 20
(b) 420

 

laugh

24.05.2021
 #1
avatar+26397 
+2

For how many integer values of a does the equation
x2+ax+28a=0
have integer solutions for
x?

 

Let the roots are r1 and r2:

 

Vieta:

x2+a=(r1+r2)x+28a=r1r2a=(r1+r2)28a=r1r228((r1+r2))=r1r228r128r2=r1r2r1r2+28r1+28r2=0(r1+28)(r2+28)2828=0(r1+28)(r2+28)=2828(r1+28)(r2+28)=784

 

The divisors of 784 are:
  1 |  2 |  4 |   7 |   8 |  14 |  16 | 28 |
 49 | 56 | 98 | 112 | 196 | 392 | 784  (15 divisors)

 

(r1+28)(r2+28)=1784=2392=4196=7112=898=1456=1649=2828

 

(r1+28)r1(r2+28)r2a=r1r21128=2778478428=75627756=7292228=2639239228=36426364=3384428=2419619628=16824168=1447728=2111211228=742174=538828=20989828=702070=50141428=14565628=281428=14161628=12494928=211221=9282828=0282828=000=0494928=21161628=1221+12=9565628=28141428=1428+14=14989828=708828=2070+20=5011211228=747728=2174+21=5319619628=1684428=24168+24=14439239228=3642228=26364+26=33878478428=7561128=27756+27=729

 

Distinct Integer values of a are 7 without a=0: {9, 14, 50, 53 144, 338, 729}

 

laugh

24.05.2021
 #1
avatar+26397 
+1

Let a, b, and c be positive real numbers.

Prove that a2+b2+c2>=ab+ac+bc.


AMGM

 

a+b2aba+b2ab|square both sides(a+b)24aba2+2ab+b24ab|2aba2+b24ab2aba2+b22abb+c2bcb+c2bc|square both sides(b+c)24bcb2+2bc+c24bc|2bcb2+c24bc2bcb2+c22bca+c2aca+c2ac|square both sides(a+c)24aca2+2ac+c24ac|2aca2+c24ac2aca2+c22ac

 

a2+b22abb2+c22bca2+c22ac(a2+b2)+(b2+c2)+(a2+c2)2ab+2bc+2ac2a2+2b2+2c22(ab+bc+ac)2(a2+b2+c2)2(ab+bc+ac)|:2a2+b2+c2ab+bc+ac

 

Under what conditions does equality occur? 

2(a2+b2+c2)=2(ab+bc+ac)2(a2+b2+c2)2(ab+bc+ac)=02(a2+b2+c2)2(ab+bc+ac)=(ab)2+(bc)2+(ca)2(ab=0)2+(bc=0)2+(ca=0)2=0ab=0a=bbc=0b=cca=0c=a

equality occur when a=b=c

 

laugh

23.05.2021
 #2
avatar+26397 
+1

The Lucas sequence is the sequence 1, 3, 4, 7, 11, 
where the first term is 1,
the second term is 3 and each term after that is the sum of the previous two terms.
What is the remainder when the 100th term of the sequence is divided by 20?

 

In number theory, the nth Pisano period, written p(n), is the period with which
the sequence taken modulo n repeats.

The Pisano periods of Lucas numbers are
     1,  3,  8,  6,  4, 24, 16, 12, 24, 12,
    10, 24, 28, 48,  8, 24, 36, 24, 18, 12,
    16, 30, 48, 24, 20, 84, 72, 48, 14, 24,
    30, 48, 40, 36, 16, 24, 76, 18, 56, 12,
    40, 48, 88, 30, 24, 48, 32,  (sequence A106291 in the OEIS)
Source:
https://en.wikipedia.org/wiki/Pisano_period

 

nLucas numbersL(n)L(n)(mod20)11123334447751111618187299847797616101233111991912322213521114843315136441622077

 

Lucas number (mod20) cycle is period{1,3,4,7,11,18,9,7,16,3,19,2}index{1,2,34,5,6,7,8,9,10,11,0(12)}

The cycle length is 12.

 

cycle index for L(100)(mod20) is  100(mod12)=4

 

L(100)(mod20)=7

 

The remainder when the 100th term of the sequence is divided by 20 is 7

 

laugh

23.05.2021