Variables a, b, and c, are positive real numbers.
Prove that:
sqrt(a^2-ab+b^2) + sqrt(a^2-ac+c^2) is greater than or equal to sqrt(b^2+bc+c^2)
Source see: https://math.stackexchange.com/questions/1820957/show-sqrta2-abb2-sqrtb2-bcc2-geq-sqrta2acc2
Applying the Law of Cosines:
AB2=a2+b2−2abcos(60∘)|cos(60∘)=12AB2=a2+b2−2ab∗12AB=√a2−ab+b2BC2=b2+c2−2bccos(60∘)|cos(60∘)=12BC2=b2+c2−2bc∗12BC=√b2−bc+c2AC2=a2+c2−2accos(120∘)|cos(120∘)=−12AC2=a2+c2−2ac∗(−12)AC=√a2+ac+c2
Using the Triangle Inequality, we can get
AB+BC≥AC√a2−ab+b2+√b2−bc+c2≥√a2+ac+c2
Under what conditions does equality occur? That is,
for what values are both sides of the inequality equal?
Let→O=(0, 0)Let→A=(acos(120∘), asin(120∘))→A=(−a2, √32a)Let→B=(bcos(60∘), bsin(60∘))→B=(b2, √32b)Let→C=(c, 0)
Points A, B, and C are on the same line:
(→c−→a)×(→b−→a)=0((c0)−(−a2√32a))×((b2√32b)−(−a2√32a))=0(c+a2−√32a)×(12(b+a)√32(b−a))=0(c+a2)(√32(b−a))−(−√32∗a2(b+a))=0√32(c+a2)(b−a)+√32∗a2(b+a)=0|∗2√3(c+a2)(b−a)+a2(b+a)=0(c+a2)(b−a)=−a2(b+a)cb−ac+ab2−a22=−ab2−a22cb−ac+ab2=−ab2cb−ac+ab=0cb+ab=acb(a+c)=acb=aca+c
equality occur does under condition: b=aca+c