Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+1

7x+5y-3z=16
3x-5x+2z=-8
5x+3x-7z=0

 

(1)7x+5y3z=16(2)3x5y+2z=8(3)5x+3y7z=0

(1)7x+5y3z=16(2)3x5y+2z=8(1)+(2):10xz=8z=10x8(4)

 

(2)3x5y+2z=8|z=10x83x5y+2(10x8)=83x5y+20x16=823x5y=85y=23x8y=23x85(5)

(3)5x+3y7z=0|z=10x85x+3y7(10x8)=05x+3y70x+56=065x3y=56|y=23x8565x3(23x85)=56|5565x3(23x8)=565325x69x+24=280256x=265x=1

 

(5)y=23x85|x=1y=2385y=155y=3

 

(4)z=10x8|x=1z=108z=2

 

laugh

06.05.2021
 #2
avatar+26397 
+1

Variables a, b, and c, are positive real numbers.
Prove that:
sqrt(a^2-ab+b^2) + sqrt(a^2-ac+c^2) is greater than or equal to sqrt(b^2+bc+c^2)

 

Source see: https://math.stackexchange.com/questions/1820957/show-sqrta2-abb2-sqrtb2-bcc2-geq-sqrta2acc2

 

Applying the Law of Cosines:

AB2=a2+b22abcos(60)|cos(60)=12AB2=a2+b22ab12AB=a2ab+b2BC2=b2+c22bccos(60)|cos(60)=12BC2=b2+c22bc12BC=b2bc+c2AC2=a2+c22accos(120)|cos(120)=12AC2=a2+c22ac(12)AC=a2+ac+c2

 

Using the Triangle Inequality, we can get
AB+BCACa2ab+b2+b2bc+c2a2+ac+c2

 

Under what conditions does equality occur? That is,

for what values are both sides of the inequality equal?

LetO=(0, 0)LetA=(acos(120), asin(120))A=(a2, 32a)LetB=(bcos(60), bsin(60))B=(b2, 32b)LetC=(c, 0)

 

Points A, B, and C are on the same line:

(ca)×(ba)=0((c0)(a232a))×((b232b)(a232a))=0(c+a232a)×(12(b+a)32(ba))=0(c+a2)(32(ba))(32a2(b+a))=032(c+a2)(ba)+32a2(b+a)=0|23(c+a2)(ba)+a2(b+a)=0(c+a2)(ba)=a2(b+a)cbac+ab2a22=ab2a22cbac+ab2=ab2cbac+ab=0cb+ab=acb(a+c)=acb=aca+c


equality occur does under condition: b=aca+c

laugh

.
06.05.2021
 #2
avatar+26397 
+2

Find all complex numbers z such that z4=4.

 

z4=4|sqrt both sidesz2=±4z2=±(1)4z2=±14|1=iz2=±2i|sqrt both sidesz=±±2iz1=2iz2=2iz3=2i=z1z4=2i=z2

 

(1+i)2=1+2i+i2|i2=1(1+i)2=1+2i1(1+i)2=2i(1i)2=12i+i2|i2=1(1i)2=12i1(1i)2=2i

 

z1=2i|2i=(1+i)2z1=(1+i)2z1=1+iz2=2i|2i=(1i)2z2=(1i)2z2=1iz3=z1z3=(1+i)z3=1iz4=z2z4=(1i)z4=1+i

 

laugh

03.05.2021