If $f(c)=\frac{3}{2c-3}$, find $\frac{kn^2}{lm}$ when $f^{-1}(c)\times c \times f(c)$ equals the simplified fraction$\frac{kc+l}{mc+n}$, where $k,l,m,\text{ and }n$ are integers.
If f(c)=32c−3,
find kn2lm
when f−1(c)×c×f(c)
equals the simplified fraction kc+lmc+n,
where k,l,m, and n are integers.
f(f−1(c))=c|f(c)=32c−332f−1(c)−3=c3=c(2f−1(c)−3)3=2cf−1(c)−3c2cf−1(c)=3+3c2cf−1(c)=3(1+c)f−1(c)=3(1+c)2c
f−1(c)×c×f(c)=3(1+c)2c×c×32c−3=3(1+c)2×32c−3=9(1+c)2(2c−3)=9c+94c−6|compare kc+lmc+nk=9l=9m=4n=−6kn2lm=9∗(−6)29∗4=(−6)24=364=9
If f(c)=32c−3,
find kn2lm
when f−1(c)×c×f(c)
equals the simplified fraction kc+lmc+n,
where k,l,m, and n are integers.
f(f−1(c))=c|f(c)=32c−332f−1(c)−3=c3=c(2f−1(c)−3)3=2cf−1(c)−3c2cf−1(c)=3+3c2cf−1(c)=3(1+c)f−1(c)=3(1+c)2c
f−1(c)×c×f(c)=3(1+c)2c×c×32c−3=3(1+c)2×32c−3=9(1+c)2(2c−3)=9c+94c−6|compare kc+lmc+nk=9l=9m=4n=−6kn2lm=9∗(−6)29∗4=(−6)24=364=9