Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
694
1
avatar+502 

If $f(c)=\frac{3}{2c-3}$, find $\frac{kn^2}{lm}$ when $f^{-1}(c)\times c \times f(c)$ equals the simplified fraction$\frac{kc+l}{mc+n}$, where $k,l,m,\text{ and }n$ are integers.
 

 May 10, 2021

Best Answer 

 #1
avatar+26399 
+2

If f(c)=32c3,
find kn2lm
when f1(c)×c×f(c)
equals the simplified fraction kc+lmc+n,
where k,l,m, and n are integers.

 

f(f1(c))=c|f(c)=32c332f1(c)3=c3=c(2f1(c)3)3=2cf1(c)3c2cf1(c)=3+3c2cf1(c)=3(1+c)f1(c)=3(1+c)2c

 

f1(c)×c×f(c)=3(1+c)2c×c×32c3=3(1+c)2×32c3=9(1+c)2(2c3)=9c+94c6|compare  kc+lmc+nk=9l=9m=4n=6kn2lm=9(6)294=(6)24=364=9

 

laugh

 May 10, 2021
 #1
avatar+26399 
+2
Best Answer

If f(c)=32c3,
find kn2lm
when f1(c)×c×f(c)
equals the simplified fraction kc+lmc+n,
where k,l,m, and n are integers.

 

f(f1(c))=c|f(c)=32c332f1(c)3=c3=c(2f1(c)3)3=2cf1(c)3c2cf1(c)=3+3c2cf1(c)=3(1+c)f1(c)=3(1+c)2c

 

f1(c)×c×f(c)=3(1+c)2c×c×32c3=3(1+c)2×32c3=9(1+c)2(2c3)=9c+94c6|compare  kc+lmc+nk=9l=9m=4n=6kn2lm=9(6)294=(6)24=364=9

 

laugh

heureka May 10, 2021

0 Online Users