Find a+b+c, given that x+y≠−1 and
ax+by+c=x+7,a+bx+cy=2x+6y,ay+b+cx=4x+y.
(1):ax+by+c=x+7(2):a+bx+cy=2x+6y(3):ay+b+cx=4x+y(1)+(2)+(3):(ax+by+c)+(a+bx+cy)+(ay+b+cx)=(x+7)+(2x+6y)+(4x+y)a(1+x+y)+b(1+x+y)+c(1+x+y)=7x+7y+7(a+b+c)(1+x+y)=7(1+x+y)|:(1+x+y), x+y≠−1a+b+c=7
