Show that (n−1 r−1) +( n−1 r ) = (n r)
this is combinations
I would apperatice your help :D
Show that (n−1r−1)+(n−1r)=(nr)
(n−1r−1)=(n−1)!(r−1)!(n−1−(r−1))!=(n−1)!(r−1)!(n−1−r+1)!=(n−1)!(r−1)!(n−r)!(n−1)!=n!n(r−1)!=r!r(n−1r−1)=n!∗rn∗r!(n−r)!
(n−1r)=(n−1)!r!(n−1−r)!=(n−1)!r!(n−r−1)!(n−1)!=n!n(n−r−1)!=(n−r)!n−r(n−1r)=n!∗(n−r)n∗r!(n−r)!
(n−1r−1)+(n−1r)=n!∗rn∗r!(n−r)!+n!∗(n−r)n∗r!(n−r)!=n!r!(n−r)!(r+(n−r)n)=n!r!(n−r)!(nn)=n!r!(n−r)!(n−1r−1)+(n−1r)=(nr)