There are values A and B such that Bx−11x2−7x+10=Ax−2+3x−5. Find A+B.
By partial fractions, A = 1 and B = 3.
As follows;
There are values A and B such thatBx−11x2−7x+10=Ax−2+3x−5Find A+B.
Bx−11x2−7x+10=Ax−2+3x−5|x2−7x+10=(x−2)(x−5)Bx−11(x−2)(x−5)=Ax−2+3x−5|∗(x−2)(x−5)Bx−11=A(x−5)+3(x−2)Bx−A(x−5)=3(x−2)+111. x=0:0+5A=−6+115A=5A=12. x=5:5B−0=9+115B=20B=4
A+B=5