Let a,b, and c be the roots of 24x^3 - 121x^2 + 87x - 8 = 0 Find $\log_3(a)+\log_3(b)+\log_3(c).
Let a,b, and c be the roots of 24x3−121x2+87x−8 = 0Findlog3(a)+log3(b)+log3(c).
Vieta: −abc=−824
log3(a)+log3(b)+log3(c)=log3(abc)=log(abc)log(3)|−824=−abc=log(824)log(3)=log(13)log(3)=log(1)−log(3)log(3)|log(1)=0=−log(3)log(3)=−1