Note.......2^100 ends in 76
And [ ....... 76]^n where n is a positive integer always ends in 76
So
2^2000 = [2^100]^20 = [ ........76]^20 will also end in 76
And 2^8 ends in 56
So........2^2008 = 2^2000 *2^8 = [ ...........76] * [ 256] = ends in 56
What is the last two digits of the number 2^2008
22008(mod100)= ?
232≡96(mod100)≡96−100(mod100)≡−4(mod100)
2008=32⋅62+2422008(mod100)≡232⋅62+24(mod100)≡(232)62⋅224(mod100)≡(−4)62⋅224(mod100)|(−1)62=162≡462⋅224(mod100)|224(mod100)=16≡462⋅16(mod100)≡462⋅42(mod100)≡464(mod100)≡2128(mod100)|128=32⋅4≡232⋅4(mod100)≡(232)4(mod100)≡(−4)4(mod100)|(−1)4=14≡44(mod100)≡256(mod100)≡56(mod100)
the last two digits of the number 2^2008 is 56