Processing math: 100%
 
+0  
 
0
611
2
avatar

What is the last two digits of the number 2^2008

 May 27, 2016
 #1
avatar+130466 
0

Note.......2^100  ends in 76

 

And  [ ....... 76]^n   where n  is a positive integer always ends in 76 

 

So

 

2^2000  =   [2^100]^20  = [ ........76]^20  will also end in 76

 

And 2^8  ends  in 56

 

So........2^2008   = 2^2000 *2^8 =    [  ...........76] * [ 256]    =  ends in 56

 

 

 

cool cool cool

 May 27, 2016
 #2
avatar+26396 
+5

What is the last two digits of the number 2^2008

 

22008(mod100)= ?

 

 23296(mod100)96100(mod100)4(mod100) 

 

2008=3262+2422008(mod100)23262+24(mod100)(232)62224(mod100)(4)62224(mod100)|(1)62=162462224(mod100)|224(mod100)=1646216(mod100)46242(mod100)464(mod100)2128(mod100)|128=3242324(mod100)(232)4(mod100)(4)4(mod100)|(1)4=1444(mod100)256(mod100)56(mod100)

 

the last two digits of the number 2^2008 is 56

 

laugh

 May 27, 2016

0 Online Users