Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
0
23.05.2016
 #3
avatar+26396 
+5

Find the value(s) of y such that the triangle with the given vertices has an area of 2 square units. (Enter your answers as a comma-separated list.)

(−5, 1), (0, 5), (−4, y)

y= ?

 

A=(axay)=(51)B=(bxby)=(05)C=(cxcy)=(4y)BA=(bxby)(axay)=(bxaxbyay)=(0(5)51)=(54)CA=(cxcy)(axay)=(cxaxcyay)=(4(5)y1)=(1y1)2Atriangle=|(BA)×(CA)|=|(54)×(1y1)|=|5(y1)41|=|5y54|=|5y9|2Atriangle=+(5y29)5y2=9+2Atriangley2=9+2Atriangle5|Atriangle=2y2=9+225y2=135y2=2.62Atriangle=(5y19)2Atriangle=5y1+95y1=92Atriangley1=92Atriangle5|Atriangle=2y1=9225y1=55y1=1

 

laugh

20.05.2016
 #5
avatar+26396 
+5

Thanks for that answer, heureka.........

could you explain how you derived your final formula?

 

...so far:

an={2n2=(2n2)+0(n odd)2n3=(2n2)1(n even)

 

...composite:

an=(2n2)1s

 

s is a switch. We need a function for a switch.

if n is even, s is on or equal 1,

and if n is odd, s is off or equal 0.

 

As the next we see we can switch with (1)n

This function does switch beween -1 and 1 if n is odd or if n is even.

(1)odd number=1(1)even number=1

 

We must modify this "switch" function to get our function.

But it is easy to do this.

 

First step we add 1.

1+(1)odd number=1+1=01+(1)even number=1+1=2

 

Second step, the number 2 must be number 1, so we divide by 2
1+(1)odd number2=02=01+(1)even number2=22=1

 

So our switch s is ready:

s=1+(1)n2s=12[ 1+(1)n ]n is odds=0n is evens=1

 

laugh

20.05.2016