heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+5

Find the value(s) of y such that the triangle with the given vertices has an area of 2 square units. (Enter your answers as a comma-separated list.)

(−5, 1), (0, 5), (−4, y)

y= ?

 

\(\begin{array}{lcll} \vec{A} = \binom{a_x}{a_y} = \binom{-5}{1} \qquad \vec{B} = \binom{b_x}{b_y} = \binom{0}{5} \qquad \vec{C} = \binom{c_x}{c_y} = \binom{-4}{y} \\\\ \vec{B}-\vec{A} = \binom{b_x}{b_y}-\binom{a_x}{a_y} = \binom{b_x-a_x}{b_y-a_y} = \binom{0-(-5)}{5-1} = \binom{5}{4} \\ \vec{C}-\vec{A} = \binom{c_x}{c_y}-\binom{a_x}{a_y} = \binom{c_x-a_x}{c_y-a_y} = \binom{-4-(-5)}{y-1} = \binom{1}{y-1} \\ \\ \end{array}\\ \begin{array}{rcll} 2\cdot A_{\text{triangle}} &=& | (\vec{B}-\vec{A}) \times (\vec{C}-\vec{A}) | \\ &=& | \binom{5}{4} \times \binom{1}{y-1} | \\ &=& | 5\cdot(y-1) - 4\cdot 1 | \\ &=& | 5\cdot y -5 - 4 | \\ &=& | 5\cdot y -9 | \\ \\ \hline \\ 2\cdot A_{\text{triangle}} &=& + ( 5\cdot y_2 -9 ) \\ 5\cdot y_2 &=& 9+ 2\cdot A_{\text{triangle}} \\ y_2 &=& \frac{9+ 2\cdot A_{\text{triangle}}}{5} \qquad &| \qquad A_{\text{triangle}} = 2 \\ y_2 &=& \frac{9+ 2\cdot 2}{5}\\ y_2 &=& \frac{13}{5}\\ \mathbf{y_2} & \mathbf{=} & \mathbf{2.6} \\ \\ \hline \\ 2\cdot A_{\text{triangle}} &=& - ( 5\cdot y_1 -9 ) \\ 2\cdot A_{\text{triangle}} &=& - 5\cdot y_1 +9 \\ 5\cdot y_1 &=& 9 - 2\cdot A_{\text{triangle}} \\ y_1 &=& \frac{9 - 2\cdot A_{\text{triangle}}} {5} \qquad &| \qquad A_{\text{triangle}} = 2 \\ y_1 &=& \frac{9 - 2\cdot2} {5} \\ y_1 &=& \frac{5} {5} \\ \mathbf{y_1} & \mathbf{=} & \mathbf{1} \\ \end{array} \)

 

laugh

20.05.2016