heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
+10

why the cubic root of the (-8) give (-2) only, where is the other complex root.

if I want to get the full roots, how I can get them.

 

\(\begin{array}{rcll} x &=& \sqrt[3]{-8} \\ x^3 &=& -8 \end{array}\\ \boxed{~ \begin{array}{rcll} x^3 +8 &=& 0 \\ && 0 = (x-x_1)(x-x_2)(x-x_3) \qquad | \qquad x_1 = -2 \\ && 0 = (x+2)(x-x_2)(x-x_3) \end{array} ~} \)

 


\(\begin{array}{rcll} && (x+2)(x-x_2)(x-x_3) \\ &=& (x+2)[x^2-x(x_2+x_3)+x_2x_3] \\ &=& x^3-x^2(x_2+x_3)+x\cdot x_2x_3 + 2x^2-2x(x_2+x_3)+2x_2x_3 \\ &=& x^3+x^2\cdot[2-(x_2+x_3)]+x\cdot[x_2x_3-2(x_2+x_3) ] +2x_2x_3 \\ \text{compare with } x^3+8\\ &=& x^3 + 8 \\ &=& x^3+x^2\cdot\underbrace{[2-(x_2+x_3)]}_{=0}+x\cdot\underbrace{[x_2x_3-2(x_2+x_3)]}_{=0} + \underbrace{2x_2x_3}_{=8} \\ \end{array} \)

 

\(\begin{array}{lcll} (1) & 2-(x_2+x_3) &=& 0\\ & x_2+x_3 &=& 2 \\ \hline (2) & x_2x_3-2(x_2+x_3) &=& 0\\ \hline (3) & 2x_2x_3 &=& 8\\ & x_2x_3 &=& 4\\ & x_3 &=& \frac{4}{x_2} \\ \hline (1) & x_2+x_3 &=& 2 \qquad & | \qquad x_3 = \frac{4}{x_2}\\ & x_2 + \frac{4}{x_2} &=& 2 \qquad & | \qquad \cdot x_2\\ & x_2^2 + 4 &=& 2x_2\\ & x_2^2 - 2x_2 + 4 &=& 0\\ & x_2 &=& \frac{2\pm \sqrt{4-4\cdot 4} }{2} \\ & x_2 &=& 1\pm \frac{\sqrt{-3\cdot 4} }{2} \\ & x_2 &=& 1\pm \frac{\sqrt{(-1)\cdot 3\cdot 4} }{2} \\ & x_2 &=& 1\pm \frac{\sqrt{-1}\sqrt{3}\sqrt{4} }{2} \\ & x_2 &=& 1\pm \frac{i\sqrt{3}2 }{2} \\ & x_2 &=& 1\pm \sqrt{3}\cdot i \\ & \mathbf{x_2} & \mathbf{=} & \mathbf{ 1 + \sqrt{3}\cdot i } \\\\ \hline (1) & x_2+x_3 &=& 2 \qquad & | \qquad x_2 = 1 + \sqrt{3}\cdot i\\ & 1 + \sqrt{3}\cdot i+x_3 &=& 2 \\ & x_3 &=& 2-1 - \sqrt{3}\cdot i \\ & x_3 &=& 1 - \sqrt{3}\cdot i\\ & \mathbf{x_3} & \mathbf{=} & \mathbf{1 - \sqrt{3}\cdot i } \\ \end{array} \)

 

laugh

18.05.2016