why the cubic root of the (-8) give (-2) only, where is the other complex root.
if I want to get the full roots, how I can get them.
x=3√−8x3=−8 x3+8=00=(x−x1)(x−x2)(x−x3)|x1=−20=(x+2)(x−x2)(x−x3)
(x+2)(x−x2)(x−x3)=(x+2)[x2−x(x2+x3)+x2x3]=x3−x2(x2+x3)+x⋅x2x3+2x2−2x(x2+x3)+2x2x3=x3+x2⋅[2−(x2+x3)]+x⋅[x2x3−2(x2+x3)]+2x2x3compare with x3+8=x3+8=x3+x2⋅[2−(x2+x3)]⏟=0+x⋅[x2x3−2(x2+x3)]⏟=0+2x2x3⏟=8
(1)2−(x2+x3)=0x2+x3=2(2)x2x3−2(x2+x3)=0(3)2x2x3=8x2x3=4x3=4x2(1)x2+x3=2|x3=4x2x2+4x2=2|⋅x2x22+4=2x2x22−2x2+4=0x2=2±√4−4⋅42x2=1±√−3⋅42x2=1±√(−1)⋅3⋅42x2=1±√−1√3√42x2=1±i√322x2=1±√3⋅ix2=1+√3⋅i(1)x2+x3=2|x2=1+√3⋅i1+√3⋅i+x3=2x3=2−1−√3⋅ix3=1−√3⋅ix3=1−√3⋅i
