Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
7752
2
avatar

In the sequence 
1,2,2,4,8,32,256,... 
each term (starting from the third term) is the product of the two terms before it. For example, the seventh term is 256, which is the product of the fifth term (8) and the sixth term (32). 

This sequence can be continued forever, though the numbers very quickly grow enormous! (For example, the 14th term is close to some estimates of the number of particles in the observable universe.) 

What is the last digit of the 35th term of the sequence?

 May 26, 2016
 #1
avatar+130466 
+1

1,2,2,4,8,32,256
 

After the first digit........the repeated pattern for the last digit is  2,2,4,8,2,6

 

So....the 35 term's final digit will = 8

 

 

 

cool cool cool

 May 26, 2016
 #2
avatar+26396 
+2

In the sequence 
1,2,2,4,8,32,256,... 
each term (starting from the third term) is the product of the two terms before it. For example, the seventh term is 256, which is the product of the fifth term (8) and the sixth term (32). 

This sequence can be continued forever, though the numbers very quickly grow enormous! (For example, the 14th term is close to some estimates of the number of particles in the observable universe.) 

What is the last digit of the 35th term of the sequence?

 

a1=1a2=2a3=2a4=4a5=8a6=32=212+13=215+03=25f1+3f0a7=256=212+23=215+13=25f2+3f1a8=8192=222+33=225+13=25f3+3f2a9==232+53=235+23=25f4+3f3a10==252+83=255+33=25f5+3f4a11==282+133=285+53=25f6+3f5a12==2132+213=2135+83=25f7+3f6a13==2212+343=2215+133=25f8+3f7a14==2342+553=2345+213=25f9+3f8a15==2552+893=2555+343=25f10+3f9a16===2895+553=25f11+3f10a35====25f30+3f29

 

 

Fibonacci numbers: fn=fn1+fn2 with f0=0 and f1=1.

f0=0,f1=1,f2=1,f3=2,f4=3,f5=5,f6=8,f7=13,f8=21,f9=34,f10=55,f11=89,f12=144,f13=233,f14=377,f15=610,f16=987,f17=1597,f18=2584,f19=4181,f20=6765,f21=10946,f22=17711,f23=28657,f24=46368,f25=75025,f26=121393,f27=196418,f28=317811,f29=514229,f30=832040,f31=1346269,f32=2178309,f33=3524578,f34=5702887,f35=9227465,f36=14930352,f37=24157817,f38=39088169,

 

a35=25f30+3f29|f30=832040f29=514229a35=25832040+3514229a35=25702887

 

What is the last digit of the 35th term of the sequence ?

25702887(mod10)= ?

 

 23321(mod10)23333(233)33(21)3321(mod10)2(33n)21(mod10)2a(33n)2a(mod10) 

 

5702887334=57028871185921=4 remainder 959203959203333=570288735937=26 remainder 2484124841332=57028871089=22 remainder 88388333=26 remainder 255702887=4334+26333+22332+2633+2525702887(mod10)=24334+26333+22332+2633+25(mod10)=241+261+221+261+25(mod10)=24+26+22+26+25(mod10)=2103(mod10)=2333+4(mod10)=213+4(mod10)=23+4(mod10)=27(mod10)=128(mod10)=8(mod10)


the last digit of the 35th term of the sequence is 8

 

laugh

 May 27, 2016

1 Online Users