heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26388 
+15

Two candles are the same height but have different cross sections.......one candle takes 4 hours to burn down completely, while the other takes 7 hours to burn down completely......

The question is...assuming that they both burn at a steady rate...if we light both at the same time, how long will it take for one candle to be twice as tall as the other???

 

H = height to begin.

h = height during the burning

 

Candle 1:

\(\begin{array}{rcl} h_1 = -\frac {H} {4\ \mathrm{hours}} \cdot t + H \end{array}\) 

 

Candle 2:

\(\begin{array}{rcl} h_2 = -\frac {H} {7\ \mathrm{hours}} \cdot t + H \end{array}\)

 

condition:

\(\begin{array}{rcll} 2\cdot h_1 &=& h_2 \\ 2\cdot \left( -\frac {H} {4\ \mathrm{hours}} \cdot t + H \right) &=& -\frac {H} {7\ \mathrm{hours}} \cdot t + H \\\\ -\frac {2\cdot H} {4\ \mathrm{hours}} \cdot t + 2\cdot H &=& -\frac {H} {7\ \mathrm{hours}} \cdot t + H \qquad &| \qquad :H \\\\ -\frac {2} {4\ \mathrm{hours}} \cdot t + 2 &=& -\frac {1} {7\ \mathrm{hours}} \cdot t + 1 \\\\ -\frac {t} {2} + 2 &=& -\frac {t} {7} + 1 \\\\ -\frac {t} {2} + 1 &=& -\frac {t} {7} \\\\ \frac {t} {2}-\frac {t} {7} &=& 1 \\\\ t\left ( \frac {1} {2}-\frac {1} {7} \right) &=& 1 \\\\ t &=& \frac{1}{ \frac {1} {2}-\frac {1} {7} } \\\\ t &=& \frac{14}{ 7-2 } \\\\ t &=& \frac{14}{ 5 } \\\\ t &=& 2.8\ \mathrm{hours} \end{array}\)

 

\(\begin{array}{rcll} h_1 &=& -\frac {H} {4\ \mathrm{hours}} \cdot 2.8\ \mathrm{hours} + H \\ h_1 &=& -0.7 H + H \\ h_1 &=& 0.3H \\\\ h_2 &=& -\frac {H} {7\ \mathrm{hours}} \cdot 2.8\ \mathrm{hours} + H\\ h_2 &=& -0.4 H + H \\ h_2 &=& 0.6H \\\\ \dfrac{h_2}{h_1} &=& \dfrac{0.6H}{0.3H}= 2 \end{array}\)

 

laugh

10.12.2015
 #1
avatar+26388 
+10

Given a triangle with a=11, b=14, and \(\mathbf{\alpha = 15^{\circ}}\), what is (are) the possible length(s) of c?

 

\(\small{ \begin{array}{rcll} a^2 &=& b^2+c^2-2bc\cdot \cos{(\alpha)} \\ c^2-2b\cdot \cos{(\alpha)}\cdot c +b^2-a^2 &=& 0 \\\\ \boxed{~ \begin{array}{rcll} Ac^2+Bc+C = 0 \\ c = {-B \pm \sqrt{B^2-4AC} \over 2A} \end{array} ~}\\\\ c^2-2b\cdot \cos{(\alpha)}\cdot c +b^2-a^2 &=& 0 \qquad A=1 \qquad B = -2b\cdot \cos{(\alpha)} \qquad C = b^2-a^2 \\ c &=& {2b\cdot \cos{(\alpha)} \pm \sqrt{(2b\cdot \cos{(\alpha)})^2-4(b^2-a^2)} \over 2} \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{ [ b\cdot \cos{(\alpha)} ]^2-(b^2-a^2)} \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{b^2\cdot[ \cos^2{(\alpha)} -1] + a^2 } \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{b^2\cdot[ 1-\sin^2{(\alpha)} -1] + a^2 } \\ c &=& b\cdot \cos{(\alpha)} \pm \sqrt{ a^2 - b^2\cdot \sin^2{(\alpha)} } \quad a=11 \quad b=14 \quad \alpha = 15^{\circ}\\ c &=& 14\cdot \cos{(15^{\circ})} \pm \sqrt{ 11^2 - 14^2\cdot \sin^2{(15^{\circ})} } \\ c &=& 14\cdot 0.96592582629 \pm \sqrt{ 107.870489571 } \\ c &=& 13.5229615680 \pm 10.3860719028\\\\ c_1 &=& 13.5229615680 + 10.3860719028\\ c_1 &=& 23.9090334709\\\\ c_2 &=& 13.5229615680 - 10.3860719028\\ c_2 &=& 3.13688966521 \end{array} }\)

 

 

check:

\(\begin{array}{rcll} c_1\cdot c_2 &=& (b-a)(b-a+2a)\\ c_1\cdot c_2 &=& (b-a)(b+a)\\ c_1\cdot c_2 &=& b^2-a^2 \quad a=11 \quad b=14 \\ c_1\cdot c_2 &=& 14^2-11^2 \\ c_1\cdot c_2 &=& 75 \\\\ c_1\cdot c_2 &=& 23.9090334709\cdot 3.13688966521 \\ c_1\cdot c_2 &=& 75\quad \text{ Okay}\\ \end{array}\)

 

laugh

09.12.2015