Bei folgender Aufgabe habe ich 2^(n-1) als Bildungsgesetz ermittelt
2^0 =1 =1
2^0+2^1 =1 + 2 =3
2^0+2^1+2^2 =1 + 2 + 4 =7
2^0+2^1+2^2+2^3 =1 + 2 + 4 + 8 =15
2^0+2^1+2^2+2^3+2^4 =1 + 2 + 4 + 8 + 16 =31
2^0+2^1+2^2+2^3+2^4+2^5 =1 + 2 + 4 + 8 + 16 + 32 =63
Bei dieser Folge sehe ich aber kein Bildungsgesetz
3^0 =1 =1
3^0+3^1 =1 + 3 =4
3^0+3^1+3^2 =1 + 3 + 9 =13
3^0+3^1+3^2+3^3 =1 + 3 + 9 + 27 =40
3^0+3^1+3^2+3^3+3^4 =1 + 3 + 9 + 27 + 81 =121
3^0+3^1+3^2+3^3+3^4+3^5 =1 + 3 + 9 + 27 + 81 + 243 =364
Kann mir jemand helfen?
Vielen Dank.
Summe einer Geometrische Reihe
\(\begin{array}{rcll} s &=& 1 &+& a + a^2+a^3+a^4+a^5+\ \cdots \ a^{n-2} + a^{n-1} \\ - a\cdot s &=& && a + a^2+a^3+a^4+a^5+\ \cdots \ a^{n-2} + a^{n-1} +a^n\\ \hline s - a\cdot s &=& 1 - a^n \\ (1-a)s &=& 1 - a^n \\ s &=& \frac{ 1 - a^n }{1-a} \\ s &=& \frac{ a^n -1 }{a-1} \\ \end{array}\)
2^0 =1 =1
2^0+2^1 =1 + 2 =3
2^0+2^1+2^2 =1 + 2 + 4 =7
2^0+2^1+2^2+2^3 =1 + 2 + 4 + 8 =15
2^0+2^1+2^2+2^3+2^4 =1 + 2 + 4 + 8 + 16 =31
2^0+2^1+2^2+2^3+2^4+2^5 =1 + 2 + 4 + 8 + 16 + 32 =63
Geometrische Reihe a = 2, Bildungsgesetz:
\(\begin{array}{rcll} s &=& \frac{ 2^n -1 }{2-1}\\\\ s &=& \frac{ 2^n -1 }{1}\\\\ \mathbf{s} & \mathbf{=} & \mathbf{2^n -1} \\ \\ \end{array}\\ \begin{array}{lcll} n=1: & s=2^1-1 &=& 1 \\ n=2: & s=2^2-1 &=& 3 \\ n=3: & s=2^3-1 &=& 7 \\ \cdots \\ n=6: & s=2^6-1 &=& 63 \\ \end{array} \)
3^0 =1 =1
3^0+3^1 =1 + 3 =4
3^0+3^1+3^2 =1 + 3 + 9 =13
3^0+3^1+3^2+3^3 =1 + 3 + 9 + 27 =40
3^0+3^1+3^2+3^3+3^4 =1 + 3 + 9 + 27 + 81 =121
3^0+3^1+3^2+3^3+3^4+3^5 =1 + 3 + 9 + 27 + 81 + 243 =364
Geometrische Reihe a = 3, Bildungsgesetz:
\(\begin{array}{rcll} s &=& \frac{ 3^n -1 }{3-1}\\\\ \mathbf{ s }& \mathbf{=} & \mathbf{ \frac{ 3^n -1 }{2} }\\ \\ \end{array}\\ \begin{array}{lcll} n=1: & s= \frac{ 3^1-1 }{2} &=& 1 \\ n=2: & s= \frac{ 3^2-1 }{2} &=& 4 \\ n=3: & s= \frac{ 3^3-1 }{2} &=& 13 \\ \cdots \\ n=6: & s= \frac{ 3^6-1 }{2} &=& 364 \\ \end{array}\)
Guten Morgen !
Versuche es mal so:
\(\frac{1}{2}*(3^{n}-1)\)
für n = 5 => 0.5*(3^5-1) = 121
für n = 6 => 0.5*(3^6-1) = 364
Gruß radix !
Summe einer Geometrische Reihe
\(\begin{array}{rcll} s &=& 1 &+& a + a^2+a^3+a^4+a^5+\ \cdots \ a^{n-2} + a^{n-1} \\ - a\cdot s &=& && a + a^2+a^3+a^4+a^5+\ \cdots \ a^{n-2} + a^{n-1} +a^n\\ \hline s - a\cdot s &=& 1 - a^n \\ (1-a)s &=& 1 - a^n \\ s &=& \frac{ 1 - a^n }{1-a} \\ s &=& \frac{ a^n -1 }{a-1} \\ \end{array}\)
2^0 =1 =1
2^0+2^1 =1 + 2 =3
2^0+2^1+2^2 =1 + 2 + 4 =7
2^0+2^1+2^2+2^3 =1 + 2 + 4 + 8 =15
2^0+2^1+2^2+2^3+2^4 =1 + 2 + 4 + 8 + 16 =31
2^0+2^1+2^2+2^3+2^4+2^5 =1 + 2 + 4 + 8 + 16 + 32 =63
Geometrische Reihe a = 2, Bildungsgesetz:
\(\begin{array}{rcll} s &=& \frac{ 2^n -1 }{2-1}\\\\ s &=& \frac{ 2^n -1 }{1}\\\\ \mathbf{s} & \mathbf{=} & \mathbf{2^n -1} \\ \\ \end{array}\\ \begin{array}{lcll} n=1: & s=2^1-1 &=& 1 \\ n=2: & s=2^2-1 &=& 3 \\ n=3: & s=2^3-1 &=& 7 \\ \cdots \\ n=6: & s=2^6-1 &=& 63 \\ \end{array} \)
3^0 =1 =1
3^0+3^1 =1 + 3 =4
3^0+3^1+3^2 =1 + 3 + 9 =13
3^0+3^1+3^2+3^3 =1 + 3 + 9 + 27 =40
3^0+3^1+3^2+3^3+3^4 =1 + 3 + 9 + 27 + 81 =121
3^0+3^1+3^2+3^3+3^4+3^5 =1 + 3 + 9 + 27 + 81 + 243 =364
Geometrische Reihe a = 3, Bildungsgesetz:
\(\begin{array}{rcll} s &=& \frac{ 3^n -1 }{3-1}\\\\ \mathbf{ s }& \mathbf{=} & \mathbf{ \frac{ 3^n -1 }{2} }\\ \\ \end{array}\\ \begin{array}{lcll} n=1: & s= \frac{ 3^1-1 }{2} &=& 1 \\ n=2: & s= \frac{ 3^2-1 }{2} &=& 4 \\ n=3: & s= \frac{ 3^3-1 }{2} &=& 13 \\ \cdots \\ n=6: & s= \frac{ 3^6-1 }{2} &=& 364 \\ \end{array}\)