heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26388 
+15

The starships Enterprise and Intrepid, after refits, are undergoing flight tests.

One such test involves them flying, in opposite directions, around a large circular course.

Enterprise and Intrepid are at opposite ends of a diameter, when, after James T KIrk has said ready steady go,  Enterprise sets off in a clockwise direction and Intrepid in an anticlockwise direction. Flying at constant speeds, they first pass each other when the Enterprise has travelled 20 light years. They pass each other again when the Intrepid has travelled on a further 10 light years.

What is the circumference of the circular course ?

 

I. First pass each other:

 

\(\small{ \begin{array}{llcl} & \text{Way Enterprise } = w_1 &=& 20\ \text{Ly} \\ & \text{Way Intrepid} = w_2 \\ & \text{Speed Enterprise } = v_1 \\ & \text{Speed Intrepid} = v_2 \\ & \text{Circumference } = 2\pi r \\ \end{array}\\ \begin{array}{llcl} \text{velocity time rule }& \\ & w_1 &=& v_1\cdot t_1 \\ & w_2 &=& v_2\cdot t_1 \\ & t_1 &=& \frac{w_1}{v_1} = \frac{w_2}{v_2} \\ \hline (1)& w_1+w_2 &=& \frac{ 2\pi r }{2} = \pi r \\ & w_2 &=& \pi r - w_1 \\ (2)& w_1 &=& \frac{v_1}{v_2} \cdot w_2 \\ & w_1 &=& \frac{v_1}{v_2} \cdot (\pi r - w_1) \\ & \dfrac{v_1}{v_2} &=& \dfrac{w_1}{\pi r - w_1} \\ \end{array} }\)

 

II. Second pass each other:

\(\small{ \begin{array}{llcl} & \text{Way Enterprise } = W_1 \\ & \text{Way Intrepid} = W_2 &=& 10\ \text{Ly} \\ \end{array}\\ \begin{array}{llcl} \text{velocity time rule }& \\ & W_1 &=& v_1\cdot t_2 \\ & W_2 &=& v_2\cdot t_2 \\ & t_2 &=& \frac{W_1}{v_1} = \frac{W_2}{v_2} \\ \hline (3)& W_1+W_2 &=& 2\pi r \\ & W_1 &=& 2\pi r - W_2 \\ (4)& W_2 &=& \frac{v_2}{v_1} \cdot W_1 \\ & W_2 &=& \frac{v_2}{v_1} \cdot (2\pi r - W_2) \\ & \dfrac{v_1}{v_2} &=& \dfrac{2\pi r - W_2}{W_2} \\ \end{array} }\)

 

III. conclusion

\(\small{ \begin{array}{rcl} \dfrac{v_1}{v_2} = \dfrac{w_1}{\pi r - w_1} &=& \dfrac{2\pi r - W_2}{W_1} \\\\ \dfrac{w_1}{\pi r - w_1} &=& \dfrac{2\pi r - W_2}{W_2} \\\\ w_1\cdot W_2 &=& (2\pi r - W_2)(\pi r - w_1) \\ w_1\cdot W_2 &=& 2\pi^2 r^2 - 2\pi r\cdot w_1+ W_2\pi r+ w_1\cdot W_2\\ w_1\cdot W_2 &=& 2\pi^2 r^2 -r(2\pi w_1+W_2\pi)+ w_1\cdot W_2\\ 2\pi^2 r^2 -r(2\pi w_1+W_2\pi) &=& 0\\ 2\pi^2 r^2 &=& r(2\pi w_1+W_2\pi) \qquad | \qquad : r\\ 2\pi^2 r &=& 2\pi w_1+W_2\pi \qquad | \qquad : \pi\\ 2\pi r &=& 2 \cdot w_1+W_2 \qquad | \qquad w_1 = 20\ \text{Ly} \qquad W_2 = 10\ \text{Ly}\\ 2\pi r &=& 2 \cdot (20\ \text{Ly} )+10\ \text{Ly} \\ \mathbf{ 2\pi r } & \mathbf{=} & \mathbf{ 50\ \text{Ly} } \\ \end{array} }\)

 

The circumference of the circular course is 50 light years.

 

laugh

14.12.2015
 #3
avatar+26388 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

New edit, without mistake:

 

\(\small{ \begin{array}{lrcll} (1) & x_1+x_2 &=& k & \qquad \rightarrow \qquad x_2 = k-x_1\\ (2) & \frac{x_1}{x_2} &=& k & \qquad \rightarrow \qquad x_1 = k \cdot x_2 \qquad \rightarrow \qquad x_1 = k \cdot (k-x_1)\\ \\ \hline \\ (2) & x_1 &=& k \cdot (k-x_1) \\ & x_1 &=& k^2 -k \cdot x_1 \\ & x_1 +k \cdot x_1 &=& k^2 \\ & x_1(1 +k ) &=& k^2 \\ & \mathbf{x_1} & \mathbf{=} & \mathbf{ \frac{k^2}{1 +k} }\\ \\ \hline \\ (1) &\frac{x_1}{x_2} &=& k \\ & x_2 &=& \frac{x_1}{k} \\ & x_2 &=& \frac{\frac{k^2}{1 +k}}{k} \\ & \mathbf{x_2} & \mathbf{=} & \mathbf{ \frac{k}{1 +k} } \\ \\ \hline \end{array} }\\ \small{ \begin{array}{rcll} (x-x_1)(x-x_2) &=& 0 \\ (x - \frac{k^2}{ 1 + k } )(x - \frac{k}{ 1 + k } ) &=& 0 \\ x^2-x\cdot( \frac{k}{ 1+k } + \frac{k^2}{ 1+k } ) + \frac{k^3}{ (1+k)^2 } &=& 0 \\ x^2-x\cdot[ \frac{k}{ 1+k }( 1+k ) ] + \frac{k^3}{ (1+k)^2 } &=& 0 \\ x^2-x\cdot k + \frac{k^3}{ (1+k)^2 } &=& 0 \qquad | \qquad \cdot(1+k)^2 \\ \underbrace{(1+k)^2 }_{=a}\cdot x^2 \underbrace{- k \cdot (1+k)^2 }_{=b}\cdot x + \underbrace{k^3}_{=c} &=& 0 \\ \\ \hline \\ \end{array} }\)

 

Example 1:

\(\begin{array}{rcll} a=(1+k)^2 \qquad b = -k \cdot (1+k)^2 \qquad c = k^3 \\ \end{array}\\ \begin{array}{rcll} \\ k & = & 1 \\ a & = & (1+1)^2 = 4 \\ b & = & -1\cdot (1+1)^2 = -4\\ c & = & 1^3 = 1\\\\ 4x^2-4x+1 &=& 0 \\ ax^2+bx+c &=& 0 \\ x_{1,2} &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x_{1,2} &=& {4 \pm \sqrt{(-4)^2-4\cdot 4\cdot 1} \over 2\cdot 4} \\ x_{1,2} &=& {4 \pm \sqrt{0} \over 8 } \\ x_{1,2} &=& \frac{4}{8} \\ x_{1,2} &=& \frac{1}{2} \\ x_1 = \frac{1}{2} &\text{ or }& x_2 = \frac{1}{2} \\\\ x_1+x_2 &=& \frac{1}{2}+\frac{1}{2} = 1 \\ \frac{x_1}{x_2} &=& \frac{\frac{1}{2}}{\frac{1}{2}} = 1 \end{array}\)

 

Example 2:

\(\begin{array}{rcll} a=(1+k)^2 \qquad b = -k \cdot (1+k)^2 \qquad c = k^3 \\ \end{array}\\ \begin{array}{rcll} \\ k & = & 2 \\ a & = & (1+2)^2 = 9 \\ b & = & -2\cdot (1+2)^2 = -18\\ c & = & 2^3 = 8\\\\ 9x^2-18x+8 &=& 0 \\ ax^2+bx+c &=& 0 \\ x_{1,2} &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x_{1,2} &=& {18 \pm \sqrt{(-18)^2-4\cdot 9\cdot 8} \over 2\cdot 9} \\ x_{1,2} &=& {18 \pm \sqrt{324-288} \over 18 } \\ x_{1,2} &=& {18 \pm \sqrt{36} \over 18 } \\ x_{1,2} &=& {18 \pm 6 \over 18 } \\ x_1 = \frac{18+6}{18} &\text{ or }& x_2 = \frac{18-6}{18} \\ x_1 = \frac{24}{18} &\text{ or }& x_2 = \frac{12}{18} \\\\ x_1 = \frac{4}{3} &\text{ or }& x_2 = \frac{2}{3} \\\\ x_1+x_2 &=& \frac{4}{3}+\frac{2}{3} = \frac{6}{3} = 2 \\ \frac{x_1}{x_2} &=& \frac{\frac{4}{3}}{\frac{2}{3}} = \frac{4}{2} = 2 \end{array}\)

 

laugh

14.12.2015
 #2
avatar+26388 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

\(\small{ \begin{array}{lrcll} (1) & x_1+x_2 &=& k & \qquad \rightarrow \qquad x_2 = k-x_1\\ (2) & \frac{x_1}{x_2} &=& k & \qquad \rightarrow \qquad x_1 = k \cdot x_2 \qquad \rightarrow \qquad x_1 = k \cdot (k-x_1)\\ \\ \hline \\ (2) & x_1 &=& k \cdot (k-x_1) \\ & x_1 &=& k^2 -k \cdot x_1 \\ & x_1 +k \cdot x_1 &=& k^2 \\ & x_1(1 +k ) &=& k^2 \\ & \mathbf{x_1} & \mathbf{=} & \mathbf{ \frac{k^2}{1 +k} }\\ \\ \hline \\ (1) &\frac{x_1}{x_2} &=& k \\ & x_2 &=& \frac{x_1}{k} \\ & x_2 &=& \frac{\frac{k^2}{1 +k}}{k} \\ & \mathbf{x_2} & \mathbf{=} & \mathbf{ \frac{k}{1 +k} } \\ \\ \hline \end{array} }\)

 


\(\small{ \begin{array}{rcll} (x-x_1)(x-x_2) &=& 0 \\ (x - \frac{k^2}{ 1 + k } )(x - \frac{k}{ 1 + k } ) &=& 0 \\ x^2-x\cdot( \frac{k}{ 1+k } + \frac{k^2}{ 1+k } ) + \frac{k^3}{ (1+k)^2 } &=& 0 \\ x^2-x\cdot[ \frac{k}{ 1+k }( 1+k ) ] + \frac{k^3}{ (1+k)^2 } &=& 0 \\ x^2-x\cdot k + \frac{k^3}{ (1+k)^2 } &=& 0 \qquad | \qquad \cdot(1+k)^2 \\ \underbrace{(1+k)^2 }_{=a}\cdot x^2 \underbrace{- k \cdot (1+k)^2 }_{=b}\cdot x + \underbrace{k^3}_{=c} &=& 0 \\ \\ \hline \\ \end{array} }\)

 

Example 1:

 

\(\begin{array}{rcll} a=(1+k)^2 \qquad b = -k \cdot (1+k)^2 \qquad c = k^3 \\ \end{array}\\ \begin{array}{rcll} \\ k & = & 1 \\ a & = & (1+1)^2 = 4 \\ b & = & -1\cdot (1+1)^2 = -4\\ c & = & 1^3 = 1\\\\ 4x^2-4x+1 &=& 0 \\ ax^2+bx+c &=& 0 \\ x_{1,2} &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x_{1,2} &=& {4 \pm \sqrt{(-4)^2-4\cdot 4\cdot 1} \over 2\cdot 4} \\ x_{1,2} &=& {4 \pm \sqrt{0} \over 8 } \\ x_{1,2} &=& \frac{4}{8} \\ x_{1,2} &=& \frac{1}{2} \\ x_1 &=& \frac{1}{2} \text{ or } x_1 &=& \frac{1}{2} \\\\ x_1+x_2 &=& \frac{1}{2}+\frac{1}{2} = 1 \\ \frac{x_1}{x_2} &=& \frac{\frac{1}{2}}{\frac{1}{2}} = 1 \end{array}\)

 

 

Example 2:

 

\(\begin{array}{rcll} a=(1+k)^2 \qquad b = -k \cdot (1+k)^2 \qquad c = k^3 \\ \end{array}\\ \begin{array}{rcll} \\ k & = & 2 \\ a & = & (1+2)^2 = 9 \\ b & = & -2\cdot (1+2)^2 = -18\\ c & = & 2^3 = 8\\\\ 9x^2-18x+8 &=& 0 \\ ax^2+bx+c &=& 0 \\ x_{1,2} &=& {-b \pm \sqrt{b^2-4ac} \over 2a}\\ x_{1,2} &=& {18 \pm \sqrt{(-18)^2-4\cdot 9\cdot 8} \over 2\cdot 9} \\ x_{1,2} &=& {18 \pm \sqrt{324-288} \over 18 } \\ x_{1,2} &=& {18 \pm \sqrt{36} \over 18 } \\ x_{1,2} &=& {18 \pm 6 \over 18 } \\ x_1 = \frac{18+6}{18} &\text{ or }& x_1 = \frac{18-6}{18} \\ x_1 = \frac{24}{18} &\text{ or }& x_1 = \frac{12}{18} \\\\ x_1 = \frac{4}{3} &\text{ or }& x_1 = \frac{2}{3} \\\\ x_1+x_2 &=& \frac{4}{3}+\frac{2}{3} = \frac{6}{3} = 2 \\ \frac{x_1}{x_2} &=& \frac{\frac{4}{3}}{\frac{2}{3}} = \frac{4}{2} = 2 \end{array}\)

 

 

laugh

14.12.2015