Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26397 
+15

The starships Enterprise and Intrepid, after refits, are undergoing flight tests.

One such test involves them flying, in opposite directions, around a large circular course.

Enterprise and Intrepid are at opposite ends of a diameter, when, after James T KIrk has said ready steady go,  Enterprise sets off in a clockwise direction and Intrepid in an anticlockwise direction. Flying at constant speeds, they first pass each other when the Enterprise has travelled 20 light years. They pass each other again when the Intrepid has travelled on a further 10 light years.

What is the circumference of the circular course ?

 

I. First pass each other:

 

Way Enterprise =w1=20 LyWay Intrepid=w2Speed Enterprise =v1Speed Intrepid=v2Circumference =2πrvelocity time rule w1=v1t1w2=v2t1t1=w1v1=w2v2(1)w1+w2=2πr2=πrw2=πrw1(2)w1=v1v2w2w1=v1v2(πrw1)v1v2=w1πrw1

 

II. Second pass each other:

Way Enterprise =W1Way Intrepid=W2=10 Lyvelocity time rule W1=v1t2W2=v2t2t2=W1v1=W2v2(3)W1+W2=2πrW1=2πrW2(4)W2=v2v1W1W2=v2v1(2πrW2)v1v2=2πrW2W2

 

III. conclusion

v1v2=w1πrw1=2πrW2W1w1πrw1=2πrW2W2w1W2=(2πrW2)(πrw1)w1W2=2π2r22πrw1+W2πr+w1W2w1W2=2π2r2r(2πw1+W2π)+w1W22π2r2r(2πw1+W2π)=02π2r2=r(2πw1+W2π)|:r2π2r=2πw1+W2π|:π2πr=2w1+W2|w1=20 LyW2=10 Ly2πr=2(20 Ly)+10 Ly2πr=50 Ly

 

The circumference of the circular course is 50 light years.

 

laugh

14.12.2015
 #3
avatar+26397 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

New edit, without mistake:

 

(1)x1+x2=kx2=kx1(2)x1x2=kx1=kx2x1=k(kx1)(2)x1=k(kx1)x1=k2kx1x1+kx1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k(xx1)(xx2)=0(xk21+k)(xk1+k)=0x2x(k1+k+k21+k)+k3(1+k)2=0x2x[k1+k(1+k)]+k3(1+k)2=0x2xk+k3(1+k)2=0|(1+k)2(1+k)2=ax2k(1+k)2=bx+k3=c=0

 

Example 1:

a=(1+k)2b=k(1+k)2c=k3k=1a=(1+1)2=4b=1(1+1)2=4c=13=14x24x+1=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=4±(4)244124x1,2=4±08x1,2=48x1,2=12x1=12 or x2=12x1+x2=12+12=1x1x2=1212=1

 

Example 2:

a=(1+k)2b=k(1+k)2c=k3k=2a=(1+2)2=9b=2(1+2)2=18c=23=89x218x+8=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=18±(18)249829x1,2=18±32428818x1,2=18±3618x1,2=18±618x1=18+618 or x2=18618x1=2418 or x2=1218x1=43 or x2=23x1+x2=43+23=63=2x1x2=4323=42=2

 

laugh

14.12.2015
 #2
avatar+26397 
+10

ax^2 +bx +c has 2 solutions, x1 and x2  x1=(-b+√Δ)/2a and x2=(−b−√Δ)2a. Is it possible that x1 + x2 = x1/x2? YES

 

(1)x1+x2=kx2=kx1(2)x1x2=kx1=kx2x1=k(kx1)(2)x1=k(kx1)x1=k2kx1x1+kx1=k2x1(1+k)=k2x1=k21+k(1)x1x2=kx2=x1kx2=k21+kkx2=k1+k

 


(xx1)(xx2)=0(xk21+k)(xk1+k)=0x2x(k1+k+k21+k)+k3(1+k)2=0x2x[k1+k(1+k)]+k3(1+k)2=0x2xk+k3(1+k)2=0|(1+k)2(1+k)2=ax2k(1+k)2=bx+k3=c=0

 

Example 1:

 

a=(1+k)2b=k(1+k)2c=k3k=1a=(1+1)2=4b=1(1+1)2=4c=13=14x24x+1=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=4±(4)244124x1,2=4±08x1,2=48x1,2=12x1=12 or x1=12x1+x2=12+12=1x1x2=1212=1

 

 

Example 2:

 

a=(1+k)2b=k(1+k)2c=k3k=2a=(1+2)2=9b=2(1+2)2=18c=23=89x218x+8=0ax2+bx+c=0x1,2=b±b24ac2ax1,2=18±(18)249829x1,2=18±32428818x1,2=18±3618x1,2=18±618x1=18+618 or x1=18618x1=2418 or x1=1218x1=43 or x1=23x1+x2=43+23=63=2x1x2=4323=42=2

 

 

laugh

14.12.2015
 #4
avatar+26397 
+5
14.12.2015