Hallo,
hier muss du alle möglichen Potenzgesetzte anwenden. Wenn du damit vertraut bist, ist es so zu lösen:
\(5^{(2-6)}\cdot 25^2=1\\ 5^{-4}\cdot 25^2 =1\\ \frac{1}{5^4}\cdot25^2=1\\ \frac{25^2}{5^4}=1\\ \frac{25^2}{(5^2)^2}=1\\ \frac{25^2}{25^2}=1\\ 1=1\)
1 = 5^(x-6)*25^x
Aber wie wäre es wenn die 2 ein x ist? Am Ende kommt wahrscheinlich 2 heraus aber wie kommt man darauf?
Hallo,
\(5^{x-6}\cdot 25^2=1\\ \frac{5^x}{5^6}\cdot 25^2=1\\ \frac{5^x}{5^6}=\frac{1}{25^2}\\ 5^x=\frac{5^6}{25^2}\\ 5^x=\frac{5^6}{(5^2)^2}=\frac{5^6}{5^4}\\ 5^x=\frac{5^6}{5^4}=5^{6-4}=5^2\\ 5^x=5^2\\x=2\)