----------------------------------
f(x) = sqrt(x)
g(x) = 1/3 x - 1
t(x) = 1/3 x + b
Punkt B ( ? / ? )
----------------------------------
1) Ableitung von f(x):
f''(x) = 1 / ( 2 * sqrt(x) )
2) Ermittle Berührpunkt B:
f''(x) = 1 / ( 2 * sqrt(x) )
<==> 1/3 = 1 / ( 2 * sqrt(x) )
<==> sqrt(x) = 3/2
<==> x = 9/4 = 2,25
Y-Wert berechnen:
f(2,25) = sqrt(2,25) = 3/2
---> Punkt B ( 9/4 ; 3/2 )
3) Tangente t(x) bestimmen (Setze B in t(x) ein):
t(x) = 1/3 x + b
3/2 = 1/3 * 9/4 + b
3/2 = 3/4 + b
b = 3/4
---> t(x) = 1/3 x + 3/4