+0  
 
0
367
5
avatar

 2x^2+x+3 in Scheitelpunktform.

 

. Helft mir bitte.

Guest 21.10.2016
 #1
avatar+1113 
0

Hallo Gast: 

 

Deine Frage zur Umformung in die Scheitelpunktsform: 

 

\(2x^2+x+3\)[1]

 

Zunächst müssen wir so umstellen, dass vor dem x^2 eine 1 steht 

 

\(\color{blue}x^2+\color{red}\frac{x}{2}+\color{green}\frac{3}{2}\)[2]

 

Nun weißt du dass die Scheitelpunktsform immer so aussieht:

 

\((\color{blue}x\color{black}+e)^2+v \)[3]

 

Hier verstehckt sich also die Binomische Formel: 

 

\((\color{blue}a\color{black}+b)^2=\color{blue}a^2\color{red}+2ab+\color{black}b^2\)[4]

 

Oder mit unseren Variablen:

 

\((\color{blue}x+\color{black}e)^2+v=\color{blue}x^2+\color{red}2ex+\color{green}e^2+v\)[5]

 

 

Ich habe dir mal die Zahlen so markiert, wie du sie gleichsetzten musst

 

Es fehlen nun die Variablen e und v: 

Für e: Wir sehen, dass e in 2ex steht. Also setzten wir das mit unserer Aufgelösten Scheitelpunktsform gleich:

 

\(\color{red} \frac{x}{2}=2ex\)[6]

 

\(\color{red}e=\frac{1}{4}\)[7]

 

So sieht unsere Scheitelpunktsform schon mal so aus: 

 

\((x+\frac{1}{4})^2+v\)[8]

 

Berechnung v: Wenn wir die Binomische Formel [8] auflösen mit unseren Variablen  würde rauskommen:

 

\(x^2+\frac{x}{2}+\frac{1}{16}\)[9]

 

Die Ersten zwei Therme stimmen ja schon, aber die 1/16 ist ja nicht gleich 3/2. Wir haben also kurz gesagt 1/16 zu viel berechnet. Das heißt wir müssen, das was wir zu viel berechnet haben von 3/2 abziehen und das ist unser v:

 

\(\color{green}e^2+v=\frac{3}{2}\)[10]

 

\(\color{green} v=\frac{3}{2}-e^2\)

 

\(v=\frac{3}{2}-\frac{1}{16}=\frac{24}{16}-\frac{1}{16}=\frac{23}{16}\)[12]

 

Die komplette Scheitelpunktsform ist demnach: 

 

\((x+\frac{1}{4})^2+\frac{23}{16}\)[13]

 

Indem du das nun auflöst, kannst du das leicht nachprüfen.  

 

gruß gandalfthegreen

gandalfthegreen  21.10.2016
bearbeitet von gandalfthegreen  21.10.2016
bearbeitet von gandalfthegreen  21.10.2016
 #2
avatar+1113 
0

noch eine Ergänzung: 

 

1. ich habe die Variablen e und v mit bedacht gewählt weil:

 

Das v ist die Verschiebung des Scheitelpunktes nach links und rechts. steht v=3 bedeutet das,  eine Verschiebung um 3 Einheiten nach LINKS. 

 

Das e ist die Stelle des Scheitelpunktes selber, es ist also die Extremstelle. Aus diesem grund kannst du auch e wie ich finde einfacher berechnen: 

 

Die Extremstelle bekommst du indem du die erste Ableitung bildest und dann null setzt

 

 \(f(x)=2x^2+x+3\\ f´(x)=4x+1\)

 

bzw:

 

\(f(x)=x^2+\frac{x}{2}+\frac{3}{2}\\ f´(x)=2x+\frac{1}{2}\)

 

Wenn man die Ableitungen null setzt kommt als "Nullstelle" jeweils :

 

\(x=\frac{1}{4}=e\)

 

raus. Das ist die Extremstelle, also unser e.

 

gruß

 

gandalfthegreen

gandalfthegreen  21.10.2016
bearbeitet von gandalfthegreen  21.10.2016
bearbeitet von gandalfthegreen  21.10.2016
 #3
avatar
0

Ich würde mit der Bezeichnung e für eine Variable vorsichtig sein, man könnte sie leicht mit der Euler´schen Zahl verwechseln.

Gast 21.10.2016
 #4
avatar+9738 
0

Ich würde wie folgt vorgehen. Ds soll eine Art Anleitung sein.

Wenn Du die nleitung mit der rechten Maustaste anklickst, kannst sie kopieren, in ein Word-Dokument einfügen und ausdrucken. Es sind 2 Teile.laugh

Omi67  22.10.2016
 #5
avatar+9738 
0

Mein A spinnt manchmal.

Omi67  22.10.2016

11 Benutzer online

Datenschutzerklärung

Wir verwenden Cookies, um Inhalte und Anzeigen bereitzustellen und die Zugriffe auf unsere Website anonymisiert zu analysieren.

Bitte klicken Sie auf "Cookies und Datenschutzerklärung akzeptieren", wenn Sie mit dem Setzen der in unserer Datenschutzerklärung aufgeführten Cookies einverstanden sind und der Drittanbieter Google Adsense auf dieser Webseite nicht-personalisierte Anzeigen für Sie einbinden darf. Nach Einwilligung erhält der Anbieter Google Inc. Informationen zu Ihrer Verwendung unserer Webseite.

Davon unberührt bleiben solche Cookies, die nicht einer Einwilligung bedürfen, weil diese zwingend für das Funktionieren dieser Webseite notwendig sind.

Weitere Informationen: Cookie Bestimmungen und Datenschutzerklärung.