32*16^(x+1)=8^(x+2)*4^(x+4) x=?
$$\\ \small{\text{
$
\begin{array}{rcl}
32\cdot 16^{x+1} &=& 8^{x+2}\cdot 4^{x+4}\\
32\cdot 16^x\cdot 16 &=& 8^x \cdot 8^2\cdot 4^x\cdot 4^4 \\\\
\dfrac{8^x\cdot4^x}{16^x} &=& \dfrac{32\cdot 16}{8^2\cdot 4^4} \\\\
\left( \dfrac{8\cdot 4}{16} \right)^x &=& \dfrac{8\cdot 4\cdot 4^2}{8^2\cdot 4^4} \\\\
2^x &=& \dfrac{8\cdot 4^3 }{8^2\cdot 4^4} \\\\
2^x &=& \dfrac{1 }{8\cdot 4} \\\\
2^x &=& \dfrac{1 }{32} \quad | \quad 32 = 2^5\\ \\
2^x &=& \dfrac{1 }{2^5} \\ \\
2^x &=& 2^{-5} \\ \\
x &=& -5
\end{array}
$
}}$$
32*16^(x+1)=8^(x+2)*4^(x+4) x=?
$$\\ \small{\text{
$
\begin{array}{rcl}
32\cdot 16^{x+1} &=& 8^{x+2}\cdot 4^{x+4}\\
32\cdot 16^x\cdot 16 &=& 8^x \cdot 8^2\cdot 4^x\cdot 4^4 \\\\
\dfrac{8^x\cdot4^x}{16^x} &=& \dfrac{32\cdot 16}{8^2\cdot 4^4} \\\\
\left( \dfrac{8\cdot 4}{16} \right)^x &=& \dfrac{8\cdot 4\cdot 4^2}{8^2\cdot 4^4} \\\\
2^x &=& \dfrac{8\cdot 4^3 }{8^2\cdot 4^4} \\\\
2^x &=& \dfrac{1 }{8\cdot 4} \\\\
2^x &=& \dfrac{1 }{32} \quad | \quad 32 = 2^5\\ \\
2^x &=& \dfrac{1 }{2^5} \\ \\
2^x &=& 2^{-5} \\ \\
x &=& -5
\end{array}
$
}}$$