$${\mathtt{136}}{d}{\mathtt{\,\times\,}}{\mathtt{24}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{h}}}{{\mathtt{d}}}}\right) = {\mathtt{3\,264}}{h}$$ Das d kürzt sich heraus : $${\frac{{\mathtt{d}}{\mathtt{\,\times\,}}{\mathtt{h}}}{{\mathtt{d}}}} = {\mathtt{h}}$$
$${\mathtt{136}}{d}{\mathtt{\,\times\,}}{\mathtt{24}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{h}}}{{\mathtt{d}}}}\right) = {\mathtt{3\,264}}{h}$$ Das d kürzt sich heraus : $${\frac{{\mathtt{d}}{\mathtt{\,\times\,}}{\mathtt{h}}}{{\mathtt{d}}}} = {\mathtt{h}}$$