heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+8

Zwei Orte A und B möchten an einem in der Nähe befindlichen, geradlinigen Abschnitt CD eines Flussufers eine gemeinsame Trinkwasseraufbereitungsanlage E errichten. Wo ist diese anzulegen, damit die Gesamtlänge der geradlinigen Rohrleitungen AE und BE möglichst niedrig ist ?

$$AE=l_1: \quad l_1^2=6^2+x^2\qquad BE=l_2: \quad l_2^2=12^2+(30-x)^2$$

$$\\\small{\text{Gesamtl$\ddot{a}$nge Rohrleitungen L = }}\ l_1+l_2 =\sqrt{6^2+x^2}+\sqrt{12^2+(30-x)^2}\\\\
\small{\text{$L(x)$ soll zum Minimum werden: }} \qquad
L(x) = \sqrt{36+x^2}+\sqrt{144+(30-x)^2}\\\\
L'(x) = \frac{\not{2}x} {\not{2} \sqrt{36+x^2} } +\frac{\not{2}(30-x)(-1)} {\not{2} \sqrt{144+(30-x)^2} }\\
\small{\text{$L'(x)$ wird auf 0 gesetzt: }} \qquad \frac{x} {\sqrt{36+x^2} } = \frac{(30-x)} {\sqrt{144+(30-x)^2} } \quad | \quad ()^2
\\\\
\small{\text{$\frac{x^2} {36+x^2} = \frac{(30-x)^2} {144+(30-x)^2 }$}} \\\\
\small{\text{$x^2*(144+(30-x)^2) = (36+x^2)(30-x)^2 $}}\\
\small{\text{$144x^2+x^2(30-x)^2 = (36+x^2)(30-x)^2 $}}\\
\small{\text{$144x^2 = (36+\not{x^2}-\not{x^2})(30-x)^2 $}}\\
\small{\text{$144x^2 = 36(30-x)^2 \quad | \quad : 36 $}} \\
\small{\text{$4x^2 = (30-x)^2 $}} \\
\small{\text{$4x^2 = 900-60x+x^2$}} \\
\small{\text{$3x^2 = 900-60x \quad | \quad : 3$}} \\
\small{\text{$x^2 = 300-20x $}}$$

 

$$\\\small{\text{$ x^2 +20x- 300 = 0 $}} \\
\small{\text{$ x_{1,2}= -10 \pm \sqrt{100+300} $}} \\
\small{\text{$ x_{1,2}= -10 \pm 20 $}} \\ \\
\small{\text{$ x_1= -10 + 20 $}} \\
\small{\text{$x_1 = 10 $}} \\ \\
\small{\text{$x_2 = -10-20 $}} \\
\small{\text{$x_2 = -30 \quad $ keine L$\ddot{o}$sung! } }$$

.
18.02.2015
 #8
avatar+26387 
+11

see: https://en.wikipedia.org/wiki/Derangement

"

$$\small{\text{Suppose that a professor has had 4 of his students }} \\
\small{\text{ - student A, student B, student C, and student D - }}\\
\small{\text{take a test and wants to let his students grade each other's tests. }}\\
\small{\text{Of course, no student should grade his or her own test. }}\\
\small{\text{How many ways could the professor hand the tests back }}\\
\small{\text{to the students for grading, }}\\
\small{\text{such that no student received his or her own test back? }}\\
\small{\text{Out of 24 possible permutations (4!) for handing back the tests, }}\\
\small{\text{there are only 9 derangements: }}\\
\boxed{BADC, BCDA, BDAC,CADB, CDAB, CDBA,DABC, DCAB, DCBA.}$$

 

$$\begin{array}{cccccr}
1& 2& 3& 4& &\small{\text{ natural Position}} \\
A& B& C& D \\
A& & & & &A \small{\text{ natural Position }} 1 \\
& B& & & &B \small{\text{ natural Position }} 2 \\
& & C& & &C \small{\text{ natural Position }} 3 \\
& & & D & &D \small{\text{ natural Position }} 4 \\
\end{array}\\\\
\small{\text{Fixed-Point-Free:}}$$

$$\\ \small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
1. \small{\text{ Derangement }} & B& A& D& C \\
B \small{\text{ not at his own(natural position) Position }} 2 & B & & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & A & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & &D& & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & & & C &
\end{array}
$
}} \\\\\\\\
\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
2. \small{\text{ Derangement }} & B& C& D& A \\
B \small{\text{ not at his own(natural position) Position }} 2 & B & & & & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & C & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & &D& & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & & & A &
\end{array}
$
}}$$

 

$$\\\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
3. \small{\text{ Derangement }} & B& D& A& C \\
B \small{\text{ not at his own(natural position) Position }} 2 & B & & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & D & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & &A& & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & & & C &
\end{array}
$
}} \\\\\\\
\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
4. \small{\text{ Derangement }} & C& A& D& B \\
C \small{\text{ not at his own(natural position) Position }} 3 & C & & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & A & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & &D& & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & & & B &
\end{array}
$
}}$$

 

$$\\\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
5. \small{\text{ Derangement }} & C& D& A& B \\
C \small{\text{ not at his own(natural position) Position }} 3 & C & & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & D & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & &A& & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & & & B &
\end{array}
$
}} \\\\\\\
\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
6. \small{\text{ Derangement }} & C& D& B& A \\
C \small{\text{ not at his own(natural position) Position }} 3 & C & & & & \\
D \small{\text{ not at his own(natural position) Position }} 4 & & D & & & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & &B& & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & & & A &
\end{array}
$
}}$$

 

$$\\\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
7. \small{\text{ Derangement }} & D& A& B& C \\
D \small{\text{ not at his own(natural position) Position }} 4 & D & & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & A & & & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & &B& & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & & & C &
\end{array}
$
}} \\\\\\\
\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
8. \small{\text{ Derangement }} & D& C& A& B \\
D \small{\text{ not at his own(natural position) Position }} 4 & D & & & & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & C & & & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & &A& & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & & & B &
\end{array}
$
}} \\\\\\\
\small{\text{
$
\begin{array}{lcccr}
& 1& 2& 3& 4 \\
9. \small{\text{ Derangement }} & D& C& B& A \\
D \small{\text{ not at his own(natural position) Position }} 4 & D & & & & \\
C \small{\text{ not at his own(natural position) Position }} 3 & & C & & & \\
B \small{\text{ not at his own(natural position) Position }} 2 & & &B& & \\
A \small{\text{ not at his own(natural position) Position }} 1 & & & & A &
\end{array}
$
}}$$

 

$$\small{\text{In every other permutation of this 4-member set, }}\\
\small{\text{at least one student gets his or her own test back.}}$$

"

16.02.2015