Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+10

What is the LCM of 8847 and 2532 ?

\small{\text{The following formula reduces the problem of computing the least common multiple}}\\  \small{\text{to the problem of computing the greatest common divisor (GCD), }}\\  \small{\text{also known as the greatest common factor:}}\\\\  \small{\text{  $   \boxed{lcm$(a,b)=\dfrac{|a\cdot b|}{\text{gcd}(a,b)} }  $  .  }}

There is the Euclidean algorithm for computing the GCD.

\small{\text{gcd$(8847,2532)$}} \\  \small{\text{$  \begin{array}{rrrr}  & & q & r\\  8847 & 2532 & 3 & 1251 \\  2532 & 1251 & 2 & 30\\  1251 & 30 & 41 & 21\\  30 & 21 & 1 & 9 \\  21 & 9 & 2 & \textcolor[rgb]{1,0,0}{3} \\  9 & 3 & 3 & $ algorithm Ends $ 0  \end{array}  $}}\\\\  \small{\text{gcd$(8847,2532)$}} = 3 \\

lcm(8847,2532)=|88472532|3=7466868

.
18.02.2015
 #1
avatar+26396 
+8

Zwei Orte A und B möchten an einem in der Nähe befindlichen, geradlinigen Abschnitt CD eines Flussufers eine gemeinsame Trinkwasseraufbereitungsanlage E errichten. Wo ist diese anzulegen, damit die Gesamtlänge der geradlinigen Rohrleitungen AE und BE möglichst niedrig ist ?

AE=l1:l21=62+x2BE=l2:l22=122+(30x)2

Gesamtl¨ange Rohrleitungen L =  l1+l2=62+x2+122+(30x)2L(x) soll zum Minimum werden: L(x)=36+x2+144+(30x)2L(x)=2x236+x2+2(30x)(1)2144+(30x)2L(x) wird auf 0 gesetzt: x36+x2=(30x)144+(30x)2|()2x236+x2=(30x)2144+(30x)2x2(144+(30x)2)=(36+x2)(30x)2144x2+x2(30x)2=(36+x2)(30x)2144x2=(36+x2x2)(30x)2144x2=36(30x)2|:364x2=(30x)24x2=90060x+x23x2=90060x|:3x2=30020x

 

x2+20x300=0x1,2=10±100+300x1,2=10±20x1=10+20x1=10x2=1020x2=30 keine L¨osung! 

.
18.02.2015
 #8
avatar+26396 
+11

see: https://en.wikipedia.org/wiki/Derangement

"

Suppose that a professor has had 4 of his students  - student A, student B, student C, and student D - take a test and wants to let his students grade each other's tests. Of course, no student should grade his or her own test. How many ways could the professor hand the tests back to the students for grading, such that no student received his or her own test back? Out of 24 possible permutations (4!) for handing back the tests, there are only 9 derangements: BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.

 

1234 natural PositionABCDAA natural Position 1BB natural Position 2CC natural Position 3DD natural Position 4Fixed-Point-Free:

 12341. Derangement BADCB not at his own(natural position) Position 2BA not at his own(natural position) Position 1AD not at his own(natural position) Position 4DC not at his own(natural position) Position 3C  12342. Derangement BCDAB not at his own(natural position) Position 2BC not at his own(natural position) Position 3CD not at his own(natural position) Position 4DA not at his own(natural position) Position 1A 

 

 12343. Derangement BDACB not at his own(natural position) Position 2BD not at his own(natural position) Position 4DA not at his own(natural position) Position 1AC not at his own(natural position) Position 3C   12344. Derangement CADBC not at his own(natural position) Position 3CA not at his own(natural position) Position 1AD not at his own(natural position) Position 4DB not at his own(natural position) Position 2B 

 

 12345. Derangement CDABC not at his own(natural position) Position 3CD not at his own(natural position) Position 4DA not at his own(natural position) Position 1AB not at his own(natural position) Position 2B   12346. Derangement CDBAC not at his own(natural position) Position 3CD not at his own(natural position) Position 4DB not at his own(natural position) Position 2BA not at his own(natural position) Position 1A 

 

 12347. Derangement DABCD not at his own(natural position) Position 4DA not at his own(natural position) Position 1AB not at his own(natural position) Position 2BC not at his own(natural position) Position 3C   12348. Derangement DCABD not at his own(natural position) Position 4DC not at his own(natural position) Position 3CA not at his own(natural position) Position 1AB not at his own(natural position) Position 2B   12349. Derangement DCBAD not at his own(natural position) Position 4DC not at his own(natural position) Position 3CB not at his own(natural position) Position 2BA not at his own(natural position) Position 1A 

 

In every other permutation of this 4-member set, at least one student gets his or her own test back.

"

16.02.2015