(2) if b=square root 13 ,and a+c=4 what is the area of the triangle ABC
\boxed{\small{\text{(1) The shape of the triangle by Heron's formula:$\quad A^2=s(s-a)(s-b)(s-c) \quad s = \frac{a+b+c}{2}$ }} }\\\\ \small{\text{$s =\frac{a+c+b}{2} \quad | \quad a+c=4 $ }}\\ \small{\text{ $s = \frac{4+b}{2} = 2 + \frac{b}{2}\qquad \boxed{s=2 + \frac{b}{2} } $ }}\\\\ \small{\text{ $ A^2=s(s-a)(s-b)(s-c) = \textcolor[rgb]{1,0,0}{s(s-b)} (s-a)(s-c) $ }} }}\\ \small{\text{ $ \textcolor[rgb]{1,0,0}{s(s-b)}=( 2+\frac{b}{2} )(2+\frac{b}{2}-b) =(2+\frac{b}{2})(2-\frac{b}{2})=4-\frac{b^2}{4} \quad | \quad b^2=13 $ }}\\ \small{\text{ $ \textcolor[rgb]{1,0,0}{s(s-b)} = 4-\frac{13}{4} =\frac{16-13}{4} = \frac{3}{4}$ }}\\\\ \small{\text{ $ A^2=\textcolor[rgb]{1,0,0}{s(s-b)} (s-a)(s-c) = \textcolor[rgb]{1,0,0}{ \frac{3}{4} } (s-a)(s-c) $ }}\\ \small{\text{ $ A^2=\frac{3}{4}(s-a)(s-c)= \frac{3}{4}(s^2-sc-sa+ac) =\frac{3}{4}(s^2-s(a+c)+ac) \quad | \quad a+c=4 $ }}\\ \small{\text{ $ A^2=\frac{3}{4}( \textcolor[rgb]{1,0,0}{s^2-4s} +ac)$ }}\\ \small{\text{ $ \textcolor[rgb]{1,0,0}{s^2-4s} = (2+ \frac{b}{2} )^2-4(2+\frac{b}{2} )=4+2b+ \frac{b^2}{4} -8-2b=-4+\frac{b^2}{4} =\frac{-16+13}{4}= -\frac{3}{4} $ }}\\\\ \small{\text{ $ A^2=\frac{3}{4}( \textcolor[rgb]{1,0,0}{ -\frac{3}{4} } +ac) $ }}\\ \small{\text{ $ A^2*\frac{4}{3} -ac + \frac{3}{4} = 0$ }}\\
\boxed{\small{\text{(2) The shape of the triangle :$\quad A= \dfrac {ac \sin{(B)} } {2} \qquad ac = \dfrac{2A}{\sin{(B)}} $ }} }\\\\ \small{\text{ $ A^2*\frac{4}{3} -ac + \frac{3}{4} = 0$ }} }\\ \small{\text{ $ A^2*\frac{4}{3} -\frac{2A}{\sin{(B)}} + \frac{3}{4} = 0$ }} }\\\\ \small{\text{ $ A_{1,2}= \dfrac { \frac{2}{\sin{(B)}} \pm\sqrt{ \left( \frac{2}{ \sin{(B)} } \right)^2-4*\frac{4}{3}*(\frac{3}{4} ) } } { 2*\frac{4}{3} } = \dfrac { \frac{2}{\sin{(B)}} \pm 2\sqrt{ \frac{1}{ \sin^2{(B)} }-1 } } { \frac{8}{3} } = \dfrac { \frac{2}{\sin{(B)}} \pm 2 \frac{ \cos{(B)} } { \sin{(B)} } } { \frac{8}{3} } $ }}\\ \small{\text{ $ A_{1,2} = \frac{3}{4} \left( \frac{1}{\sin{(B)}} \pm \frac{ \cos{(B)} } { \sin{(B)} } \right) = \frac{3}{4} \left( \frac{1\pm\cos{(B)} }{\sin{(B)}} \right) $ }}\\\\ \small{\text{ $ A_{1} = \frac{3}{4} \left( \frac{1+\cos{(B)} }{\sin{(B)}} \right) \quad | \quad \cos{(B)} = - \frac{1}{2} \quad \sin{(B)} =\sqrt{ 1-\cos^2{ (B) }} = \frac{\sqrt{3}}{2} $ }}\\ \small{\text{ $ A_{1}=\frac{3}{4}*\frac{1+ (-\frac{1}{2}) }{ \frac{\sqrt{3}}{2} } =\frac{3}{4}*\frac{2}{ \sqrt{3} } *\frac{1}{2} =\frac{3}{4}*\frac{2*\sqrt{3}}{3} *\frac{1}{2} = \frac{1}{4}*\sqrt{3} $ }}\\ \small{\text{ $ \boxed{A_{1}= \frac{1}{4}\sqrt{3} $ no solution!$} $ }}\\\\ \small{\text{ $ A_{2} = \frac{3}{4} \left( \frac{1-\cos{(B)} }{\sin{(B)}} \right) \quad | \quad \cos{(B)} = - \frac{1}{2} \quad \sin{(B)} =\sqrt{ 1-\cos^2{ (B) }} = \frac{\sqrt{3}}{2} $ }}\\ \small{\text{ $ A_{2}=\frac{3}{4}*\frac{1- (-\frac{1}{2}) }{ \frac{\sqrt{3}}{2} } =\frac{3}{4}*\frac{2}{ \sqrt{3} }*\frac{3}{2} =\frac{3}{4}* \frac{2*\sqrt{3}}{3} *\frac{3}{2} = \frac{3}{4}*\sqrt{3} $ }}\\ \small{\text{ $ \boxed{A_{2}= \frac{3}{4}\sqrt{3}} $ }}

.