I is a parabola with (1,-18) as its vertex and opening upwards touches (4,0) which is one of the roots , a straight line y=-x+11 pass through the parabola at P and Q , find the coordinates of P and Q.
$$\boxed{Parabola: y=a(x-x_v)^2+y_v }\qquad x_v=1 \quad y_v=-18\\
a? \quad x = 4 \quad y = 0 \\
0=a(4-1)^2-18\\\\
a=\dfrac{18}{3^2}=\frac{18}{9}=2\\\\
\boxed{Parabola: y=2(x-1)^2-18 \quad line: y=-x+11}$$
The cut:
$$y=-x+11\\
y+x=11 \\
x = 11-y \\
x-1 = 10-y$$
We set x-1 = 10 - y in Parabola:
$$y=2(x-1)^2-18 \\
y=2(10-y)^2-18 \\
y=2(100-20y+y^2)-18\\
y=200-40y+2y^2-18\\
\boxed{2y^2-41y+182=0}\\
y_{1,2}=\dfrac{41 \pm \sqrt{41^2-4*2*182} }{2*2}=\dfrac{41 \pm \sqrt{225} }{4}=\dfrac{41 \pm 15 }{4}\\\\
y_1=\frac{56}{4}=14 \qquad y_2 = \frac{26}{4}=6.5\\
x_1 = 11-y_1 =11-14=-3 \qquad x_2=11-y_2=11-6.5=4.5$$
Point P = (-3, 14) and Point Q = (4.5, 6.5)