Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+15

In the figure:http://i57.tinypic.com/29ggy1u.jpg,D and E are the points lying on AC and AB respetively such that BE:AE =AD:DC=2:1.BD andCE intersects at K .

Find EK:KC ?

We set the angles:angle ABD =B angle ADB =D angle BKE = angle BKC =KWe set the line segments:line segment BE =b line segment AE =a line segment CD =c line segment DA =d line segment EK =p line segment KC =q 

I.

sin(B)d=sin(D)a+bsin(B)sin(D)=da+b

II.

sin(180D)=sinDsin(D)q=sin(K)cq=csin(D)sin(K)

III.

sin(K)b=sin(B)pp=bsin(B)sin(K)

IV.

\dfrac{p}{q}  =  \dfrac{   b \cdot \dfrac {\sin{(B)}} {\sin{(K)}}   }   {   c \cdot \dfrac{\sin{(D)}}{\sin{(K)}} }   }   =\dfrac {b} {c} \cdot \dfrac{\sin{(B)}}{\sin{(D)}} }   =\dfrac {b} {c} \cdot \left(\dfrac{d}{a+b} \right) \\\\  =  \dfrac {1} { \dfrac{c}{d} }\cdot \left(\dfrac {1}{ \dfrac{a+b}{b} } \right)  =  \dfrac {1} { \dfrac{c}{d} }\cdot \left(\dfrac {1}{ \dfrac{a}{b}+\dfrac{b}{b}  } \right)  =  \dfrac {1} { \dfrac{c}{d} }\cdot \left(\dfrac {1}{ \dfrac{a}{b}+1   } \right)\\\\\\  \dfrac{c}{d} = \dfrac{a}{b} = \dfrac{1}{2} \\\\  \dfrac{p}{q}  =2\cdot \left(\dfrac {1}{ \dfrac{1}{2}+1 } \right)   = 2\cdot \left(\dfrac {1}{ \dfrac{3}{2} }\right)   =2\cdot \dfrac{2}{3} \\\\  \boxed{\dfrac{p}{q} = \dfrac{4}{3}}

EK:KC = 4 : 3

12.02.2015