heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #7
avatar+26387 
+5

Nullstellen von x+3+ln(x+3)

 

siehe: https://de.wikipedia.org/wiki/Fixpunktiteration

Wir setzen z= x+3

Die Gleichung muss  zuerst in eine Fixpunktgleichung, also in eine Gleichung der Form

$$z= \varphi(z)$$

umgeformt werden.

$$\\ z + \ln(z) = 0 \\
z= -\ln(z) \quad | \quad e^{()} \\
e^z = e^{ -\ln(z)} \\\\
e^z = \dfrac{1} { e^{ \ln(z)} }\\\\
e^z = \dfrac{1} { z } \\\\
z = \dfrac{1} { e^z } \\$$

und erhalten die Gleichung:

$$\boxed{z = \dfrac{1} { e^z } \small{\text{ mit } x = z-3}} \\
\small{\text{
Die Iterationsformel lautet nun:
$
z_{i+1} = \dfrac{1} { e^{z_i} }
$
}}$$

Wir starten die Iteration mit

$$\small{
$
z_0 = 1 \quad ( x = z_0-3 = 1-3 = -2)\\\\
z_1 = \dfrac{1}{e^1} = 0.36787944117 \\
z_2 = \dfrac{1}{e^{0.36787944117 } } =0.69220062756\\
z_3 = \dfrac{1}{e^{0.69220062756} } =0.50047350056\\
z_4 = \dfrac{1}{e^{0.50047350056} } =0.60624353509\\
z_5 = \dfrac{1}{e^{0.60624353509} } =0.54539578598\\
z_6 = \dfrac{1}{e^{0.54539578598} } =0.57961233550\\
z_7 = \dfrac{1}{e^{0.57961233550} } =0.56011546136\\
z_8 = \dfrac{1}{e^{0.56011546136} } =0.57114311508\\
z_9 = \dfrac{1}{e^{0.57114311508} } =0.56487934739\\
$
}}$$

$$\\ \small{
$
z_{10} = \dfrac{1}{e^{0.56487934739} } =0.56842872503\\
z_{11} = \dfrac{1}{e^{0.56842872503} } =0.56641473315\\
z_{12} = \dfrac{1}{e^{0.56641473315} } =0.56755663733\\
z_{13} = \dfrac{1}{e^{0.56755663733} } =0.56690891192\\
z_{14} = \dfrac{1}{e^{0.56690891192} } =0.56727623218\\
z_{15} = \dfrac{1}{e^{0.56727623218} } =0.56706789839\\
z_{16} = \dfrac{1}{e^{0.56706789839} } =0.56718605010\\
z_{17} = \dfrac{1}{e^{0.56718605010} } =0.56711904006\\
z_{18} = \dfrac{1}{e^{0.56711904006} } =0.56715704400\\
z_{19} = \dfrac{1}{e^{0.56715704400} } =0.56713549021\\
z_{20} = \dfrac{1}{e^{0.56713549021} } =0.56714771426\\
\dots
$
}}$$

$$\\z = 0.56714329041 \\
x = z - 3= 0.56714329041 - 3\\
\textcolor[rgb]{1,0,0}{x = -2.43285670959}$$

.
09.02.2015
 #1
avatar+26387 
+5

Gliese 581e is an exoplanet with a mass of 1.9 Earths that orbits a red dwarf star at a distance of 5 x1010 m (0.33 au). If its orbital period is 124 days, find the mass of the star in kg. Divide your answer by the suns mass to see how much more or less massive the star is than our sun.

$$1 \, au = 149\ 597\ 870\ 700 \; m$$

We have: 

$$\small{\text{$T = 124\ days =124 * 24 * 60 * 60\ s = 1.07136*10^7\ s $}}$$  and 

$$\small{\text{$a = 0.33 au \approx 5 * 10^{10}\ m$}}$$  and

$$\small{\text{
$
m_{Exoplanet}= 1.9* m_{earth} \qquad m_{earth} = 5.97219 * 10^{24}\ kg
$
}}$$
  see:
https://en.wikipedia.org/wiki/Earth_mass

$$\small{\text{
$
m_{Exoplanet}= 1.13471610000* 10^{25}\ kg
$
}}$$

 

see: https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

$$\boxed{
\dfrac{T^2}{a^3} = \dfrac{ 4 \pi^2}{G(M+m)}
} \qquad
\boxed { M=\dfrac{ 4 \pi^2a^3}{G T^2 } - m
}$$

where
T is the orbital period of the orbiting body,
M is the mass of the star,
G is the universal gravitational constant and
a is the radius, i.e. the semi-major axis of the ellipse.
m is the mass of the orbiting body.

The gravitational constant is : see: https://en.wikipedia.org/wiki/Gravitational_constant

$$\small{\text{
$
G = 6.67384 \cdot 10^{-11} \dfrac{m^3}{kg \cdot s^2}
$
}}$$

$$\small{\text{
$
M=\dfrac{ 4 \pi^2 (5 * 10^{10}\ m)^3}{
6.67384 \cdot 10^{-11} \dfrac{m^3}{kg \cdot s^2}
* (1.07136*10^7\ s) ^2
} - 1.13471610000* 10^{25}\ kg
$
}}\\\\\\
\small{\text{
$
M=\dfrac{ 4 \pi^2 *5^3 * 10^{30}}{
6.67384 \cdot 10^{-11}* 1.07136^2*10^{14
}}\ kg
- 1.13471610000* 10^{25}\ kg
$
}}\\\\\\
\small{\text{
$
M=\dfrac{ 4 \pi^2 *5^3 * 10^{30}\cdot 10^{11}\cdot 10^{-14
} }{
6.67384 * 1.07136^2}\ kg
- 1.13471610000* 10^{25}\ kg
$
}}\\\\\\
\small{\text{
$
M=\dfrac{ 4 \pi^2 *5^3 * 10^{27
} }{
6.67384 * 1.07136^2}\ kg
- 1.13471610000* 10^{25}\ kg
$
}}\\\\
\small{\text{
$
M=6.44203535336 \cdot 10^{29}\ kg
- 1.13471610000* 10^{25}\ kg
$
}}\\
\small{\text{
$
M=10^{25} (6.44203535336 \cdot 10^{4} - 1.13471610000 )\ kg
$
}}\\
\small{\text{
$
M=64419.2188175 \cdot 10^{25} \ kg
$
}}\\
\small{\text{
$
M_{star}=6.44192188175 \cdot 10^{29} \ kg
$
}}$$

Solar mass see: https://en.wikipedia.org/wiki/Solar_mass

$$\small{\text{
$
M_\odot= 1.98855 \cdot 10^{30}\ kg
$
}}\\\\
\small{\text{
$
\dfrac{ M_{star} }{ M_\odot }
= \dfrac{6.44192188175 \cdot 10^{29} \ kg }
{1.98855 \cdot 10^{30}\ kg }
$
}}\\\\
\small{\text{
$
= \dfrac{6.44192188175 \cdot 10^{-1}}
{1.98855}$
}}\\\\
\small{\text{
$
= 3.23950711913 \cdot 10^{-1}
$
}}\\
\small{\text{
$
= 0.323950711913 $
}}\\
\small{\text{
$
M_{star}= 0.324\ * M_\odot $
}}$$

.
09.02.2015