Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+5

If the 0.145 mm diameter tungsten filament in a light bulb is to have a resistance of 0.161 Ω at 20.0°C, how long should it be? The resistivity of tungsten at 20.0°C is 5.60 10-8 Ω · m

diameteter (d) = 0.145 mm,

resistance (R) = 0.161 Ω,

resistivity (ρ) = 5.60 *10-8 Ω · m

ρ=RALA=π d24Length (L): L=π d24Rρ

 L=(π0.14520.16145.60108)(mm2 ΩΩ m) 1Ω mm2m=106 Ω m1 Ω m=106 mm2 Ωm L=(π0.14520.16145.60108)(mm2 Ω106 mm2 Ωm)  L=(π0.14520.16145.60108)(m106)  L=(π0.14520.16145.60102) m  L=π0.14520.16110245.60 m  L=0.04747486461 m  L=4.747486461 cm4.75 cm 

.
09.02.2015
 #7
avatar+26396 
+5

Nullstellen von x+3+ln(x+3)

 

siehe: https://de.wikipedia.org/wiki/Fixpunktiteration

Wir setzen z= x+3

Die Gleichung muss  zuerst in eine Fixpunktgleichung, also in eine Gleichung der Form

z=φ(z)

umgeformt werden.

z+ln(z)=0z=ln(z)|e()ez=eln(z)ez=1eln(z)ez=1zz=1ez

und erhalten die Gleichung:

z=1ez mit x=z3 Die Iterationsformel lautet nun: zi+1=1ezi 

Wir starten die Iteration mit

\small{   $   z_0 = 1 \quad ( x = z_0-3 = 1-3 = -2)\\\\  z_1 = \dfrac{1}{e^1} = 0.36787944117 \\  z_2 = \dfrac{1}{e^{0.36787944117 } } =0.69220062756\\  z_3 = \dfrac{1}{e^{0.69220062756} } =0.50047350056\\  z_4 = \dfrac{1}{e^{0.50047350056} } =0.60624353509\\  z_5 = \dfrac{1}{e^{0.60624353509} } =0.54539578598\\   z_6 = \dfrac{1}{e^{0.54539578598} } =0.57961233550\\  z_7 = \dfrac{1}{e^{0.57961233550} } =0.56011546136\\  z_8 = \dfrac{1}{e^{0.56011546136} } =0.57114311508\\  z_9 = \dfrac{1}{e^{0.57114311508} } =0.56487934739\\  $  }}

\\ \small{   $  z_{10} = \dfrac{1}{e^{0.56487934739} } =0.56842872503\\  z_{11} = \dfrac{1}{e^{0.56842872503} } =0.56641473315\\  z_{12} = \dfrac{1}{e^{0.56641473315} } =0.56755663733\\  z_{13} = \dfrac{1}{e^{0.56755663733} } =0.56690891192\\  z_{14} = \dfrac{1}{e^{0.56690891192} } =0.56727623218\\  z_{15} = \dfrac{1}{e^{0.56727623218} } =0.56706789839\\  z_{16} = \dfrac{1}{e^{0.56706789839} } =0.56718605010\\  z_{17} = \dfrac{1}{e^{0.56718605010} } =0.56711904006\\  z_{18} = \dfrac{1}{e^{0.56711904006} } =0.56715704400\\  z_{19} = \dfrac{1}{e^{0.56715704400} } =0.56713549021\\  z_{20} = \dfrac{1}{e^{0.56713549021} } =0.56714771426\\  \dots  $  }}

z=0.56714329041x=z3=0.567143290413x=2.43285670959

.
09.02.2015
 #1
avatar+26396 
+5

Gliese 581e is an exoplanet with a mass of 1.9 Earths that orbits a red dwarf star at a distance of 5 x1010 m (0.33 au). If its orbital period is 124 days, find the mass of the star in kg. Divide your answer by the suns mass to see how much more or less massive the star is than our sun.

1au=149 597 870 700m

We have: 

T=124 days=124246060 s=1.07136107 s  and 

a=0.33au51010 m  and

 mExoplanet=1.9mearthmearth=5.972191024 kg   see: https://en.wikipedia.org/wiki/Earth_mass

 mExoplanet=1.134716100001025 kg 

 

see: https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

T2a3=4π2G(M+m)M=4π2a3GT2m

where
T is the orbital period of the orbiting body,
M is the mass of the star,
G is the universal gravitational constant and
a is the radius, i.e. the semi-major axis of the ellipse.
m is the mass of the orbiting body.

The gravitational constant is : see: https://en.wikipedia.org/wiki/Gravitational_constant

 G=6.673841011m3kgs2 

 M=4π2(51010 m)36.673841011m3kgs2(1.07136107 s)21.134716100001025 kg  M=4π25310306.6738410111.0713621014 kg1.134716100001025 kg  M=4π2531030101110146.673841.071362 kg1.134716100001025 kg  M=4π25310276.673841.071362 kg1.134716100001025 kg  M=6.442035353361029 kg1.134716100001025 kg  M=1025(6.442035353361041.13471610000) kg  M=64419.21881751025 kg  Mstar=6.441921881751029 kg 

Solar mass see: https://en.wikipedia.org/wiki/Solar_mass

 M=1.988551030 kg  MstarM=6.441921881751029 kg1.988551030 kg  =6.441921881751011.98855  =3.23950711913101  =0.323950711913  Mstar=0.324 M 

.
09.02.2015